

Specific Heat: willingness of an object to change temperature, with the symbol C_p (the p means "under constant pressure") specific heat: the amount of energy required to change the temperature of one gram of a substance by 1°C

Specific Heat Units

- 1 calorie = energy required to heat 1 gram of water by 1°C
- 1 <u>Calorie</u> (food labels) = 1 kilocalorie
- 1 calorie = 4.184 joules
- 1 kcal = 4.184 kJ

Specific Heat

Duluth, next to Lake Superior, stays cool in the summer and relatively warm in the winter. Why?

Substance	Specific Heat
copper	6!/98.43
granite	0.7953
lead	0.1276
ice	2.06
water	4.184

Calculating Heat Example #1 $\Delta H = C_p \bullet m \bullet \Delta T$

3.05 kg of aluminum is heated from 22.1°C to 67.5°C. Calculate the heat absorbed in both J and kJ by the metal. The specific heat of aluminum is 0.900 J/g°C.

Calculating Heat Example #2

A 205-g block of Nelsonium at temperature of 90°C is dropped into 402 g of water at 27°C. The final temperature of the mixture is 31°C? What is the specific heat of Nelsonium?