

For all the following problems, show your work in extraordinary detail.

A force is applied to a ball according to the graph shown.

1. What impulse is delivered to the ball? Area under graph:

$$
8 N \cdot 5+6 N \cdot s=14 N \cdot s
$$

The above ball has a mass of 500 g and was traveling at $20 \mathrm{~m} / \mathrm{s}$ before it got hit.

$$
\begin{aligned}
& 0.500 \mathrm{~kg} \\
& \text { s change in momentum }=14 \mathrm{~N} \cdot \mathrm{~s}
\end{aligned}
$$

2. What will be the ball's change in momentum?

$$
\begin{aligned}
& \text { will be the ball's change in momentum } \cdot=\frac{(0.500 \mathrm{~kg} \cdot \Delta V)}{.500 \mathrm{hg}}=\frac{14 \mathrm{~N} \cdot \mathrm{~s}}{.500 \mathrm{~kg}} \\
& \Delta p=m \Delta V=\frac{(0.5 p}{\Delta p=i m p}
\end{aligned}
$$

4. What will be its new velocity?
5. A bumper car with Mickey as the driver (total mass $=100 \mathrm{~kg}$), moving at $10.0 \mathrm{~m} / \mathrm{s}$, collides with a stationary bumper car with Minnie as the driver (total mass $=75 \mathrm{~kg}$). After the collision, Mickey's car has a velocity of $-2.0 \mathrm{~m} / \mathrm{s}$. What is the velocity of Minnie's car after the collision?

$$
\begin{aligned}
& P_{i}=P_{f} \\
& \left(100 \mathrm{~kg} \cdot 10 \frac{\mathrm{~m}}{5}\right)+\left(75 \mathrm{hg} \cdot 0 \frac{m}{s}\right)=\left(100 \mathrm{ng} \cdot-20 \frac{0}{\mathrm{~s}}\right)+\left(75 \mathrm{hg} \cdot V_{f-\mathrm{m} / \mathrm{m}}\right. \\
& 1000 \mathrm{~kg} / \mathrm{s}=-200 \mathrm{mgm}+75 \mathrm{hg}_{\mathrm{f}-\mathrm{m} . \mathrm{m}}^{\mathrm{s}} \\
& +200 \quad+200
\end{aligned}
$$

6. A 0.058 kg tennis ball is hit at $50 \mathrm{~m} / \mathrm{s}$ and hit back at $55 \mathrm{~m} / \mathrm{s}$. What is the tennis ball's change in momentum? $\Delta p=m \Delta V$

$$
\begin{aligned}
& \quad p=m \Delta r \\
& =0.058 \mathrm{hg}(-55 \mathrm{~m} / \mathrm{s}-50 \mathrm{~m} / \mathrm{s})=-6.09 \frac{\mathrm{kgm}}{\mathrm{~s}}
\end{aligned}
$$

7. While being thrown, a total force of 135 N acts on a lacrosse ball (mass $=142 \mathrm{~g}$) for a period of 0.06 sec .
a) Calculate the ball's change in momentum.

$$
\Delta p=i \mathrm{mp} p=135 \mathrm{~N} \cdot 0.065=8.1 \mathrm{~N} \cdot \mathrm{~s}=8.1 \frac{\mathrm{kgm}}{\mathrm{~s}}
$$

b) If the lacrosse ball is initially at rest, what will be its speed when it leaves the player's hand?

$$
\begin{aligned}
& \Delta p=M \Delta V \\
& \Delta V=\frac{\Delta p}{m}=\frac{8.1 \mathrm{~kg} \cdot \mathrm{~m}}{0.142 \mathrm{~kg}}=57 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

8. An empty train car, coasting at $7 \mathrm{~m} / \mathrm{s}$, strikes a loaded car that is stationary and the cars link together. Each of the cars has a mass of 4000 kg when empty, and the loaded car contains $10,000 \mathrm{~kg}$ of cargo.
a.) Draw both a "before" picture and an "after" picture of this situation. Label with relevant data.

Before

b.) What type of interaction occurs, elastic, inelastic, or explosive? (circle correct choice)
c.) With what speed does the combination of the two cars start to move?

$$
\begin{aligned}
& P_{i}=P_{f} \\
& (4000 \mathrm{~kg} \cdot 7 \mathrm{~m})+(14,000 \mathrm{hg} \eta \mathrm{~g})=\left(18000 \mathrm{hg} \cdot V_{f-b_{b+h}}\right. \\
& \frac{28000 \mathrm{hm} / /_{s}}{18000 \mathrm{hg}}+0=\frac{+880001 \mathrm{~V}_{f-60+\mathrm{h}}}{18000 \mathrm{hg}} \quad V_{f-6+h}=1.56 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

9. Your friend is standing on a skateboard with frictionless wheels. Your friend throws a 6.0 kg bowling ball straight back at $10 \mathrm{~m} / \mathrm{s}$. Your friend has a mass of 80 kg .
a.) Draw both a "before" picture and an "after" picture of this situation. Label with relevant data.

b.) What type of interaction occurs, elastic, inelastic, ox explosive) (circle correct choice)
c.) How fast will your friend roll away?

$$
\begin{aligned}
& \left(86 \mathrm{hg} \cdot 0_{5}^{m}\right)=\left(80 \mathrm{ch} \cdot \mathrm{~V}_{\mathrm{ff}}\right)+(6.0 \mathrm{Og} \cdot \mathrm{log}) \\
& 0 \frac{\mathrm{Mgm}}{\mathrm{~s}}=80 \mathrm{mg} V_{f . f}+60 \mathrm{mgm} \\
& \frac{-60 \frac{\mathrm{kgm}}{\mathrm{~s}}}{80 \mathrm{hg}}=\frac{8 g \mathrm{hg} V_{f-f}}{80 \mathrm{~km}} \\
& -0.75 \frac{\mathrm{~m}}{\mathrm{~s}}=V_{f-f}
\end{aligned}
$$

