\qquad

1. A 50 kg frictionless cart is traveling horizontally at a constant speed of $10 \mathrm{~m} / \mathrm{s}$.
a. What types) of energy does it have?

Kinetic
b. Calculate the energy (or energies):

$$
E_{K}=\frac{1}{2} M V^{2}=\frac{1}{2}(50 \mathrm{~kg})\left(10^{\mathrm{m}} / \mathrm{s}\right)^{2}=2500 \mathrm{~J}
$$

c. What force of friction would be required to stop the cart in 100 meters?

$$
\begin{gathered}
E_{k}=E_{\text {Therm }}=F_{p} \cdot \Delta x \\
2500 \mathrm{~J}=F_{f}(100 \mathrm{~m}) \Rightarrow F_{p}=25 \mathrm{~N}
\end{gathered}
$$

2. An 8 kg bowling ball falls down from a 1.0 meter high table.
a. What is the ball's E_{g} on top of the table?

$$
\begin{aligned}
& \text { the ball's } E_{g} \text { on top of the table? } \\
& E_{g}=A A-g \cdot \Delta y=(8 \mathrm{hg})\left(9.8 \frac{\mathrm{~N}}{\mathrm{~kg}}\right)(1.0 \mathrm{~m})=78.4 \mathrm{~J}
\end{aligned}
$$

b. What will be the speed with which the ball lands on the ground?

$$
\begin{aligned}
& \text { be the speed with which the ball lands on the ground? } \\
& E_{g}=E_{k}=\frac{1}{2} M V^{2} \\
& 78.4 \mathrm{~J}=\frac{1}{2}(8 \mathrm{hg}) v^{2} \quad \sqrt{19.6 \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}}} \\
& V=4.4 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

3. A 50 g pinball rests against a spring-loaded plunger that has been compressed 0.080 meters.
a. If 2.0 J of energy was transferred to the spring as it was compressed, what is its spring constant?

$$
\begin{aligned}
E_{e 1}=\frac{1}{2} k x^{2} \quad 2.0 J & =\frac{1}{2}(k)(0.080 \mathrm{~m})^{2} \\
k & =625 \mathrm{~N} / \mathrm{m}
\end{aligned}
$$

b. What is the maximum velocity of the pinball after the spring has transferred its energy to it?

$$
\begin{aligned}
& 2.0 J=\frac{1}{2} M v^{2} \\
& 2.0 J=\frac{1}{2}(.050 \mathrm{~kg}) \mathrm{V}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& V^{2}=80 \mathrm{~m}^{2} / \mathrm{s}^{2} \\
& V=8.94^{\mathrm{m} / \mathrm{s}}
\end{aligned}
$$

c. If the ball was fired vertically, how high will it go?

$$
\begin{aligned}
& E_{g}=E_{e} \quad 2.0 J=9 \cdot \mu \cdot \Delta y \\
& 2.0 J=9.8 \mathrm{~N} / \mathrm{kg} \cdot 0.050 \mathrm{~kg} \cdot \Delta y \quad \Delta y=4.1 \mathrm{~m}
\end{aligned}
$$

d. Draw an energy bar graph for the above situation, the initial moment being immediately before launch, and the final moment being when it reaches its maximum height. assume no

Energy Flow
Diagram

Energy Flow air resistance

Use the energy account options below in order to answer the questions that follow.
a.) E elastic
b.) $E_{\text {thermal }}$
c.) $E_{\text {chemical }}$
d.) $E_{\text {gravitational }}$
e) $E_{\text {kinetic }}$

Indicate which types) of energy are present in each situation:
4. You apply the brakes on your car to slow it down b, e
5. An elevator is stopped on the $10^{\text {th }}$ floor. a
6. A slingshot is pulled back ready to fire. a
7. A candle is burned.
8. A car is halfway down the big hill on the Wild Thing ride at Valleyfair. b, d, e
9. Stretching a spring from $2 m$ to $4 m$, the amount of energy stored in the spring changes by a factor of: 4
10. Lifting an object from $1 m$ to $2 m$, the amount of energy stored by the object changes by a factor of: 2
11. Dragging an object on a surface for 10 m instead of 5 m , the amount of energy stored thermally changes by a factor of: 2
12. Driving 60 mph instead of 30 mph , the amount of energy stored by the car's motion changes by a factor of: 4
13. A motionless 50 kg car is released from rest at position A . It moves along a frictionless track as shown in the diagram. Complete the energy bar charts below.
Elevation at point A is 90 m , point B is 45 m , point C is 0 m
No spring, no friction so no $E_{e l}$ or $E_{T h}$

$$
E_{\text {Total }}=44,100 \mathrm{~J}
$$

A
B
0

14. For the car above calculate the following:
a. E_{g} at point A, point B, point C (3 answers)
$A: E_{g}=9.8 \mathrm{~N} / \mathrm{hg}-50 \mathrm{hg} \cdot 90 \mathrm{~m}=44,100 \mathrm{~J}$
$B: E_{g}=9.8 \mathrm{~N} / \mathrm{hg} .50 \mathrm{hg}-45 \mathrm{~m}=22,050 \mathrm{~J}$
$C: E_{g}=0 J$
b. E_{k} at point A, point B, point C (3 answers)

A: $E_{h}=0 \mathrm{~J}$
$B: E_{K}^{h}=22,050 \mathrm{~J}$
$C: E_{k}=44,100 \mathrm{~J}$
c. Calculate the car's velocity at point C .

$$
\text { Calculate the car's velocity at point } C \text {. } \quad V^{2}=1764 \mathrm{~m}^{2} / \mathrm{s}^{2} \quad V=42 \mathrm{~m} / \mathrm{s}
$$

