CAP Review

Name: \qquad
Date: \qquad Pd: \qquad

Remember to show your work and include units.

Use the graph below to answer the questions that follow.

6. Specific equation:
7. General equation:
8. Based upon the above graph, describe the object's motion (be sure to explain its speed and acceleration).
9. Give an example of a real-world situation that could represent the motion described by the above graph.
10. Consider the following sets of position-vs.-time, velocity-vs.-time, and acceleration-vs.-time graphs. Draw the missing graphs based on the graph that is given.

11. Compare the kinematic behavior of objects A and B as represented in the velocity-vs.-time graph to the right.

	Comparison	Explain how you know.
a. Displacement, Δx, from 0 to 4 s	$\mathbf{A}>\mathbf{B}, \mathbf{A}<\mathbf{B}$, or $\mathbf{A}=\mathbf{B}$	
b. Displacement, Δx, from 0 to 8 s	$\mathbf{A}>\mathbf{B}, \mathbf{A}<\mathbf{B}$, or $\mathbf{A}=\mathbf{B}$	
b. Velocity, v, at $t=6 \mathrm{~s}$	$\mathbf{A}>\mathbf{B}, \mathbf{A}<\mathbf{B}$, or $\mathbf{A}=\mathbf{B}$	
c. Acceleration, a, at $t=6 \mathrm{~s}$	$\mathbf{A}>\mathbf{B}, \mathbf{A}<\mathbf{B}$, or $\mathbf{A}=\mathbf{B}$	

12. The Tower of Terror ride at Disney's California Adventure Park raises high off the ground and then drops you for 3.50 seconds. Assume no friction or air resistance.
a) Sketch the velocity-vs.-time for this motion.
b) How fast would you be going after dropping for 3.50 seconds?
c) How far did you drop during this time interval?
13. A tennis ball is tossed straight up into the air and returns to its starting position 2.0 seconds later.
a) Sketch the velocity-vs.-time for this motion.
b) At what speed was the ball initially tossed?

c) How high did the ball go?
