

Question of the Day

- A cart is released from rest and allowed to roll down a ramp. Describe its motion.
- Answer: $v_{i}=0$, but its $v_{f} \neq 0$! Therefore, the cart undergoes a change in velocity.
- Which of the above represents the motion of an object with a velocity that is changing at a constant rate?
- Answer: B, A is constant velocity, C is nonconstantly changing velocity

Question of the Day

(m/s)|(m)

Question of the Day

- On the above graph...
-What does the slope represent?
-What are the units for slope on the above graph?
- Answer: the rate at which the velocity changes, the acceleration; $(\mathrm{m} / \mathrm{s}) / \mathrm{s}=\mathrm{m} / \mathrm{s}^{2}$ (meters per second, every second)

Question of the Day

- What is the general equation for this graph?
- Answer: $v=a \cdot t+v_{i}$

Question of the Day

- Is the acceleration positive, negative, or zero?
- Is the object speeding up, slowing down, or maintaining a constant speed?
- Is the initial velocity $\left(v_{\mathrm{i}}\right)$ positive, negative, or zero?
- Is the final velocity (v_{i}) positive, negative, or zero?
- Answer: $a=-$, slowing down, $v_{i}=+, v_{f}=0$

Question of the Day

- A cart is launched up a ramp at $3 \mathrm{~m} / \mathrm{s}$ and reaches its highest point in 1.5 s . Determine the following:
- $\Delta x=$
- $V_{\mathrm{i}}=$
- $v_{\mathrm{f}}=$
- $a=$
- $\Delta t=$
- Answers: $\Delta x=4.5 \mathrm{~m}, v_{i}=3 \mathrm{~m} / \mathrm{s}, v_{f}=0 \mathrm{~m} / \mathrm{s}, a=-$ $2 \mathrm{~m} / \mathrm{s}^{2}, \Delta t=1.5 \mathrm{~s}$

Question of the Day

- Label where the velocity is,+- , and/or 0 .
- Label where the acceleration is +, -, and/or 0 .
- Label where the object is slowing, going faster, or going a constant speed.

Question of the Day

- A cart is launched up a ramp at $9 \mathrm{~m} / \mathrm{s}$. The acceleration of the cart on the ramp is $-3 \mathrm{~m} / \mathrm{s}^{2}$.
- How long until the cart turns around?
- How long will it take the cart to return to its initial position?
- What will be the cart's velocity when it returns to its initial position?
- What will be the cart's velocity after 3.14159 s ?
- Answers: $t=3 \mathrm{~s} ; 3$ more seconds; $v=-9 \mathrm{~m} / \mathrm{s} ; \quad v=$ $a \cdot t+v_{i}=\left(-3 \mathrm{~m} / \mathrm{s}^{2}\right) \cdot(3.14159 \mathrm{~s})+9 \mathrm{~m} / \mathrm{s}=-.425 \mathrm{~s}$

Question of the Day

- Brainstorm three real-life scenarios that would demonstrate constant acceleration.
- Possible Answers: Tubing down a straight hill, coasting on a bike down a straight hill, rolling a laptop cart down the ramp on the way to the lunch room, skydiving (initially), dropping an object (any freefall), etc.

Question of the Day

- You release a marble down a stairway railing. The marble's velocity changes by $6 \mathrm{~m} / \mathrm{s}$ every second.
- How fast will the marble be going after 3 seconds?
- How fast will the marble be going after 6.28318 seconds?
- Answer: $t=3 \mathrm{~s}, \mathrm{v}=18 \mathrm{~m} / \mathrm{s} ; t=6.28318 \mathrm{~s}$, $v=37.699 \mathrm{~m} / \mathrm{s}$

Question of the Day

- Which cart will have the greatest acceleration?
- Which cart will have the least acceleration?
- Answer: Since mass and v_{i} don't affect the acceleration, "D" will have the greatest acceleration because it has the steepest ramp.

Question of the Day

$v(\mathrm{~m} / \mathrm{s})$

-What is the displacement after 5 seconds?

- Answer: $\Delta x=$ area between function and t axis $=1 / 2 \cdot(5 \mathrm{~s}) \cdot\left[(5 \mathrm{~s}) \cdot\left(3 \mathrm{~m} / \mathrm{s}^{2}\right)\right]=37.5 \mathrm{~m}$

Question of the Day

- A ball is dropped and falls for 5.0 seconds.
- Sketch the velocity-vs-time graph.
- What will be the object's velocity after falling for 5.0 seconds?
- How far will the object have traveled during this interval?
- Answer: $v_{f}=49 \mathrm{~m} / \mathrm{s} ; \Delta x=-122.5 \mathrm{~m}$

Question of the Day

- A skydiver drops a golf ball from his balloon capsule that has reached its maximum height of $36,600 \mathrm{~m}$. If there is no air resistance at any point during the descent.
- How long will it take the ball to hit the ground?
- With what speed will the ball hit the ground?
- The speed of sound is about $340 \mathrm{~m} / \mathrm{s}$. How does the final velocity compare to this?
- Answer: $\Delta t=86.4 \mathrm{~s} ; v_{f}=847 \mathrm{~m} / \mathrm{s}=$ mach 2.5

Question of the Day

- At which point(s) is the object..
- moving the slowest? ...moving the fastest?
- changing direction?
- decreasing speed? ...increasing speed?
- Answer: slowest: B \& F; fastest: A, D, or G; changing direction: B \& F; slowing: $A \rightarrow B, D \rightarrow F$; speeding: $B \rightarrow D, F \rightarrow G$

