Questions of the Day

Non-Zero Total Force (NZTF)
Newton's $2^{\text {nd }}$ Law

Question of the Day

- Draw a force diagram for the frictionless hover-puck.
- Describe its motion.
- Answer: F_{g} and $F_{p \text {-air, puck }}$ only, forces are unbalanced, therefore puck will accelerate.

Question of the Day
The only difference between each pair of objects are the values stated.

- Greater acceleration: a or b?
c or d?
- Answer: $a>b, c>d$

Question of the Day

- A rocket powered sled experiences a total force of 100 N and has a mass of 20 kg .
-What will be the rocket sled's acceleration?
- How fast will it be moving in $3.0 \mathrm{~s}\left(v_{\mathrm{i}}=0\right)$?
- Answer: $a=\Sigma F / m=100 \mathrm{~N} / 20 \mathrm{~kg}=5 \mathrm{~m} / \mathrm{s}^{2}, v=$ $a t+v_{i}=\left(5 \mathrm{~m} / \mathrm{s}^{2}\right)(3.0 \mathrm{~s})+0 \mathrm{~m} / \mathrm{s}=15 \mathrm{~m} / \mathrm{s}$

Question of the Day

- You trade in your rocket powered sled for a rocket powered elevator. The rockets give the elevator an upward acceleration of $9.8 \mathrm{~m} / \mathrm{s}^{2}$.
- Draw a force diagram for a 50 kg person in the elevator, label each force with number values.
- Answer: downward F_{g} of 490 N \& upward F_{N} of 980 N for a total upward Force of 490 N .

Question of the Day

- At the bottom of a 60 kg bungee jumper's fall, their velocity goes from $-30 \mathrm{~m} / \mathrm{s}$ to $0 \mathrm{~m} / \mathrm{s}$ in 2.0 seconds. What tension in the bungee cord causes this to happen? (Assume constant force.)
- Answer: $a=\Delta v / \Delta t=(0--30 \mathrm{~m} / \mathrm{s}) / 2.0 \mathrm{~s}=+15$ $\mathrm{m} / \mathrm{s}^{2} \rightarrow \Sigma F=m \cdot a=(60 \mathrm{~kg}) \cdot\left(+15 \mathrm{~m} / \mathrm{s}^{2}\right)=+900 \mathrm{~N}$
- $\Sigma F=+900 \mathrm{~N}, F g=-588 \mathrm{~N}, F_{T}=+1488 \mathrm{~N}$

Question of the Day

- If the elevator is moving down and slowing to a stop, then the total force on the person is directed:
a.) up
b.) down
c.) zero total force (therefore no direction)
d.) cannot be determined
- Answer: "a", up. Since v=- , a = + to slow to a stop.

Question of the Day

- An 8 lb bowling ball and a 16 lb bowling ball have the same acceleration. How must the total force on the two compare?
- Answer: Since 16 lb ball has $2 x$ the mass, it will require $2 x$ the total force to have the same acceleration.

Question of the Day

- What would happen to the acceleration if..
- the pulling force was changed to 4.0 N ?
- the mass was changed to 4.0 kg ?
- the previous two changes were done at the same time?
- Answer: $4 \times$ the acceleration, $1 / 4 \times$ the acceleration, the two changes would counteract each other \rightarrow no change

Question of the Day

 - Expo -- A 16 g whiteboard marker is launched down a length of PVC tubing. The end of the marker has an area of $2.84 \mathrm{E}-4 \mathrm{~m}^{2}$. A lung-induced pressure of $2.5 \mathrm{psi}(17,237$ $\mathrm{N} / \mathrm{m}^{2}$) is applied.
- What total force does the marker receive?
-What is the resulting acceleration?
- If the tube is 1.2 m long, how fast will it go?
- Answer: $\Sigma F=4.9 \mathrm{~N}, \mathrm{a}=306 \mathrm{~m} / \mathrm{s}^{2}=31 \mathrm{~g}$'s
- down $4 \mathrm{ft}(1.2 \mathrm{~m})$ tube, $v_{f}=27 \mathrm{~m} / \mathrm{s}=60 \mathrm{mi} / \mathrm{h}$

Question of the Day

- A 500 kg racecar goes from 0 to $30 \mathrm{~m} / \mathrm{s}$ in 3.5 seconds. What total force must be acting upon the racecar?
- Answer: $\Sigma F=(500 \mathrm{~kg})\left(8.57 \mathrm{~m} / \mathrm{s}^{2}\right)=4285.7$ N

