Questions of the Day

2D Projectile Motion

- You're an Angry Bird. Draw the path that you follow.
- Answer: parabolic trajectory.

Question of the Day

- From fastest to slowest, rank the jumper's...
 - horizontal speed
 - vertical speed
- Answer: horizontal, A=B=C=D; vertical, D>A=C>B

- Two rocks, A & B, are thrown from different heights, as shown. Both are thrown horizontally. Which rock will land farther away? Explain why.
- Answer: Rock A will land farther away since they both have the same v_x but A has more t to travel.

- One ball is thrown horizontally and the other is dropped, both from the same height.
 - Draw each ball's trajectory.
 - Which ball hits the ground first? Why?
- Answer: Same Δy , v_{i-y} , a_y therefore same Δt .

- A truck moves at a constant velocity. Inside the cargo compartment, a ball is held directly above an "x" painted on the floor. The ball is dropped.
 - Where does the ball hit the floor (on the x, in front, behind)?
 - What path would a person in the cargo compartment see the ball follow
 - A person with x-ray vision is watching all this happen from the side of the road. What path would this person see the ball take?
- Answer: on the "x"; straight down; parabolic path forward

Question of the Day

Variable	Affect Time to Hit Ground?
V _{i-x}	N
V _{i-y}	Υ
a _x	N
a _y	Υ
Δх	N
Δу	Υ
mass	N

- You throw a ball straight up in the air and then catch it on its way back down. Between leaving and returning to your hand...
 - where is the ball going the fastest? ...slowest?
 - where is the acceleration the largest? ...smallest?
 - how will the time to the ball's peak compare to the time to come back down?
- Answer: fastest at immediately after thrown and before caught, slowest at peak, acceleration is constant, time up will be same as time down