Questions of the Day

2D Projectile Motion

Question of the Day

- You're an Angry Bird. Draw the path that you follow.
- Answer: parabolic trajectory.

Question of the Day

- Draw a force diagram for the Angry Bird at this point in its trajectory.
- Answer: F_{g} only.

Question of the Day

- Based upon the bird's force diagram, what do you predict about the bird's vertical motion and the bird's horizontal motion?
- Answer: const acc vert, const vel. horiz

Question of the Day

- From fastest to slowest, rank the jumper's...
- horizontal speed
- vertical speed
- Answer: horizontal, $A=B=C=D$; vertical, $D>A=C>B$

Question of the Day

- Two rocks, A \& B, are thrown from different heights, as shown. Both are thrown horizontally. Which rock will land farther away? Explain why.
- Answer: Rock A will land farther away since they both have the same v_{x} but A has more t to travel.

Question of the Day

- One ball is thrown horizontally and the other is dropped, both from the same height.
- Draw each ball's trajectory.
- Which ball hits the ground first? Why?
- Answer: Same $\Delta y, v_{i-y}, a_{y}$ therefore same Δt.

Question of the Day

- A truck moves at a constant velocity. Inside the cargo compartment, a ball is held directly above an "x" painted on the floor. The ball is dropped.
- Where does the ball hit the floor (on the x, in front, behind)?
- What path would a person in the cargo compartment see the ball follow.
- A person with x-ray vision is watching all this happen from the side of the road. What path would this person see the ball take?
- Answer: on the "x"; straight down; parabolic path forward

Question of the Day

Variable	Affect Time to Hit Ground?
$\mathrm{v}_{\mathrm{i}-\mathrm{x}}$	\boldsymbol{N}
$\mathrm{v}_{\mathrm{i}-\mathrm{y}}$	\boldsymbol{Y}
a_{x}	\boldsymbol{N}
a_{y}	\boldsymbol{Y}
$\Delta \mathrm{x}$	\boldsymbol{N}
$\Delta \mathrm{y}$	\boldsymbol{Y}
mass	\boldsymbol{N}

Question of the Day

- You throw a ball straight up in the air and then catch it on its way back down. Between leaving and returning to your hand...
- where is the ball going the fastest? ...slowest?
- where is the acceleration the largest? ...smallest?
- how will the time to the ball's peak compare to the time to come back down?
- Answer: fastest at immediately after thrown and before caught, slowest at peak, acceleration is constant, time up will be same as time down

