Questions of the Day

Uniform Circular Motion (UCM) &
Some Semester Review "Throwbacks"

Question of the Day

- A satellite is in orbit around Earth. Draw a force diagram for the positions shown.
- Answer: Only force is F_g , toward center of Earth

Question of the Day

- A marble enters a frictionless groove, as pictured above. "C" is the center of the circle. At position "A", which of the following forces are acting upon the marble?
 - a. downward force of gravity
 - b. force exerted by the groove directed from A to C
 - c. force in the direction of motion
 - d. force from C to A
- Answer: downward F_a & force by groove from A to C

Question of the Day

 It takes 4.3 s for a wind turbine blade to complete one revolution. Complete the following table.

	A	В	С
Angular Velocity, ω			
Linear Velocity, v			

Answer: ω = 360 %4.3s = 83.7 %s at A,B,C; v_A = 88.0m/4.3s = 20.5 m/s, v_B = 176m/4.3s = 40.9 m/s, v_C = 264m/4.3s = 61.4m/s (137 mph)

- Which of the following best describes the forces acting upon the elevator?
 - a. upward force from cable > downward force of gravity
 - b. upward force from cable = downward force of gravity
 - c. upward force from cable < downward force of gravity
 - d. none of the above
- Answer: b, forces balance each other, $\Sigma F = 0$, $\Delta v = 0$.

- Compare the angular velocity of A to B.
- Compare the linear velocity of A to B.
- Answer: A & B have equal angular velocities, but B has 2x the linear velocity.

- An angry bird is drifting freely through outer space from "A" to "B". At "B", it turns on a rocket-pack that produces a constant thrust at 90° to its motion. Which is the best representation of the bird's resulting path?
- Answer: "iv", immediate parabolic path (the rocket provides a constant unbalanced upward force)

Question of the Day

- A ball is attached to a string and is being swung in a vertical circle. Draw a force diagram for the ball when it is (a) at the top and (b) when it is at the bottom.
- Answer: At top \rightarrow F_g down, F_T down (if even present), in order for ΣF to be toward center of circle. At bottom \rightarrow F_g down, F_T up, $F_T > F_g$ in order for ΣF to be toward the center of the circle

- At "C", the rocket-pack is turned off and the thrust immediately goes to zero. Which is the best representation of the bird's resulting path?
- Answer: "ii", returns to constant velocity in new direction.

Question of the Day

- · What would happen to the centripetal force if...
 - the mass doubled?
 - the velocity doubled?
 - the radius doubled?
 - all of the above were done at the same time?
- Answer: centripetal force would double, quadruple, half, quadruple

Part 1

- A team of sled dogs exert a constant horizontal force on a heavy sled on a flat field. As a result, the sled moves across the field at a constant speed, v_i. The constant horizontal force applied by the dogs...
 - a. has the same magnitude as the weight of the sled
 - b. is greater than the weight of the sled
 - has the same magnitude as the total force which resists the motion of the sled
 - d. is greater than the total force which resists the motion of the sled
 - e. is greater than either the weight of the sled or the total force which resists its motion
- Answer: "c", the horizontal forces must balance for constant velocity

Part 2

- The team of sled dogs now doubles the amount of constant horizontal force that they exert on the sled. As a result, the sled now moves...
 - a. with a constant speed that is double the speed " v_i " in the previous question
 - b. with a constant speed that is greater than the speed " v_i " in the previous question, but not necessarily twice as fast
 - for a while with a speed that is constant and greater than the speed "v_i" in the previous question, then with a speed that increases thereafter
 - d. for a while with an increasing speed, then with a constant speed thereafter
 - e. with a continuously increasing speed
- Answer: "e", the horizontal forces are unbalanced → acceleration, increasing speed

throwback Question of the Day

- A ball travels along a frictionless surface with constant velocity, $v_{\rm i}.$ A hammer applies a swift hit perpendicular to $v_{\rm i},$ as shown above.
 - Which path will the ball follow after being hit?
 - After being hit, the speed of the ball is:
 - a. same as v_i before being hit
 - b. v_h , the speed that results from the hit, unrelated to the previous v_i
 - c. equal to the arithmetic sum of v_i and v_h

 - d. smaller than either v_i or v_h e. greater than v_i or v_h , but less than the arithmetic sum of the two speeds
- Answer: path "d", speed of the ball is "e"

Part 3

- If the team of sled dogs suddenly let their harnesses go slack and stopped exerting a horizontal force on the sled, then the sled will...
 - a. immediately come to a stop
 - b. continue moving at a constant speed for a while and then slow to a stop
 - c. immediately start slowing to a stop
 - d. continue at a constant speed
 - e. increase its speed for a while and then start slowing to a stop
- Answer: "c", the horizontal forces are unbalanced → acceleration, decreasing speed