# Questions of the Day 

Uniform Circular Motion (UCM)
\&
Some Semester Review "Throwbacks"

## Question of the Day



- A satellite is in orbit around Earth. Draw a force diagram for the positions shown.
- Answer: Only force is $F_{g}$, toward center of Earth


## Question of the Day



- A marble enters a frictionless groove, as pictured above. " $C$ " is the center of the circle. At position " $A$ ", which of the following forces are acting upon the marble?
a. downward force of gravity
b. force exerted by the groove directed from A to C
c. force in the direction of motion
d. force from C to A
- Answer: downward $F_{g}$ \& force by groove from $A$ to $C$


## Question of the Day

- It takes 4.3 s for a wind turbine blade to complete one revolution. Complete the following table.

|  | A | B | C |
| :--- | :--- | :--- | :--- |
| Angular <br> Velocity, $\omega$ |  |  |  |
| Linear <br> Velocity, $v$ |  |  |  |

- Answer: $\omega=360 \% 4.3 \mathrm{~s}=83.7 \% \mathrm{~s}$ at
$A, B, C ; v_{A}=88.0 \mathrm{~m} / 4.3 \mathrm{~s}=20.5 \mathrm{~m} / \mathrm{s}$,
$v_{B}=176 \mathrm{~m} / 4.3 \mathrm{~s}=40.9 \mathrm{~m} / \mathrm{s}, v_{C}=$
$264 \mathrm{~m} / 4.3 \mathrm{~s}=61.4 \mathrm{~m} / \mathrm{s}(137 \mathrm{mph})$


## Question of the Day



- Which of the following best describes the forces acting upon the elevator?
a. upward force from cable > downward force of gravity
b. upward force from cable = downward force of gravity
c. upward force from cable < downward force of gravity
d. none of the above
- Answer: b, forces balance each other, $\Sigma F=0, \Delta v=0$.


## Question of the Day



- Compare the angular velocity of A to B .
- Compare the linear velocity of A to B.
- Answer: A \& B have equal angular velocities, but $B$ has $2 x$ the linear velocity.


## throwback Question of the Day



- An angry bird is drifting freely through outer space from "A" to "B". At "B", it turns on a rocket-pack that produces a constant thrust at $90^{\circ}$ to its motion. Which is the best representation of the bird's resulting path?
- Answer: "iv", immediate parabolic path (the rocket provides a constant unbalanced upward force)


## Question of the Day



- A ball is attached to a string and is being swung in a vertical circle. Draw a force diagram for the ball when it is (a) at the top and (b) when it is at the bottom.
- Answer: At top $\rightarrow F_{g}$ down, $F_{T}$ down (if even present), in order for $\Sigma F$ to be toward center of circle. At bottom $\rightarrow F_{g}$ down, $F_{T}$ up, $F_{T}>F_{g}$ in order for $\Sigma F$ to be toward the center of the circle


## throwbackQuestion of the Day



- At "C", the rocket-pack is turned off and the thrust immediately goes to zero. Which is the best representation of the bird's resulting path?
- Answer: "if", returns to constant velocity in new direction.


## Question of the Day



- What would happen to the centripetal force if...
- the mass doubled?
- the velocity doubled?
- the radius doubled?
- all of the above were done at the same time?
- Answer: centripetal force would double, quadruple, half, quadruple


## throwback Question of the Day



Part 1

- A team of sled dogs exert a constant horizontal force on a heavy sled on a flat field. As a result, the sled moves across the field at a constant speed, $\mathrm{v}_{\mathrm{i}}$. The constant horizontal force applied by the dogs...
a. has the same magnitude as the weight of the sled
b. is greater than the weight of the sled
c. has the same magnitude as the total force which resists the motion of the sled
d. is greater than the total force which resists the motion of the sled
e. is greater than either the weight of the sled or the total force which resists its motion
- Answer: "c", the horizontal forces must balance for constant velocity


## Question of the Day



- For objects A \& B, compare their:
- Linear velocity
- Angular velocity
- Centripetal acceleration
- Centripetal force
- Answer: B has twice the linear velocity, they have equal angular velocities, B has twice the centripetal acceleration, $B$ has four times the centripetal force


## throwback Question of the Day



Part 2

- The team of sled dogs now doubles the amount of constant horizontal force that they exert on the sled. As a result, the sled now moves.
a. with a constant speed that is double the speed " $\mathrm{v}_{\mathrm{i}}$ " in the previous question
b. with a constant speed that is greater than the speed " $v$, in the previous question, but not necessarily twice as fast
c. for a while with a speed that is constant and greater than the speed " $v_{i}$ " in the previous question, then with a speed that increases thereafter
d. for a while with an increasing speed, then with a constant speed thereafter
e. with a continuously increasing speed
- Answer: "e", the horizontal forces are unbalanced $\rightarrow$ acceleration, increasing speed


## throwback Question of the Day



- A ball travels along a frictionless surface with constant velocity, $\mathrm{v}_{\mathrm{i}}$. A hammer applies a swift hit perpendicular to $\mathrm{v}_{\mathrm{i}}$, as shown above.
- Which path will the ball follow after being hit?
- After being hit, the speed of the ball is:
a. same as $\mathrm{v}_{\mathrm{i}}$ before being hit
b. $v_{h}$, the speed that results from the hit, unrelated to the previous $v_{i}$
c. equal to the arithmetic sum of $v_{\mathrm{i}}$ and $v_{\mathrm{h}}$
d. smaller than either $v_{\mathrm{i}}$ or $\mathrm{v}_{\mathrm{h}}$
e. greater than $v_{i}$ or $v_{h}$, but less than the arithmetic sum of the two speeds
- Answer: path " $d$ ", speed of the ball is "e"


## throwbackQuestion of the Day



Part 3

- If the team of sled dogs suddenly let their harnesses go slack and stopped exerting a horizontal force on the sled, then the sled will..
a. immediately come to a stop
b. continue moving at a constant speed for a while and then slow to a stop
c. immediately start slowing to a stop
d. continue at a constant speed
e. increase its speed for a while and then start slowing to a stop
- Answer: "c", the horizontal forces are unbalanced $\rightarrow$ acceleration, decreasing speed

