Questions of the Day

Energy

Question of the Day

- Remember our analogy regarding energy...
- Energy is to a system as \qquad
\qquad
- Answer: money, bank.

Question of the Day

-
Earth included in system: $-\underline{N O}$
Spring included in system: $-\underline{\underline{Y E S}}$

g

- A roller coaster is launched from rest by a spring to the top of the loop and is still in motion. Complete the energy analysis above.

Question of the Day

- What is the energy account associated with each of the following questions?
- Is it moving?
- Is it above or below height zero?
- Is anything stretched or compressed?
- Has friction acted within the system?
- Answer: energy stored... kinetically (E_{k}), gravitationally (E_{g}), elastically (E_{e}), thermally ($\Delta E_{\text {therm }}$).

Question of the Day

- What is the line's slope? Include units.
- How much force would be required to produce a stretch of .60 m ?
- Answer: $10 \mathrm{~N} / 0.30 \mathrm{~m}=33.3 \mathrm{~N} / \mathrm{m} ; 20 \mathrm{~N} \rightarrow .60 \mathrm{~m}$

Question of the Day

- The above data was collected from a spring. What is the "spring constant"?
- Answer: spring constant = slope on F vs. Δx graph $=10 \mathrm{~N} / .20 \mathrm{~m}=50 \mathrm{~N} / \mathrm{m}$

Question of the Day

- How much energy is stored when
-...the spring is stretched to 0.10 m ?
-. ...the spring is stretched to 0.20 m ?
- How do these two amounts compare to each other (by what factor do they differ)?
- Answer: $0.25 \mathrm{~J}, 1.0 \mathrm{~J}$, twice the stretch but four times the energy since $E_{e l}$ depends upon Δx^{2}.

Question of the Day

- How much energy is stored in the spring by stretching it 0.10 m ?
- Answer: $E_{e l}=1 / 2^{*}(5 \mathrm{~N}) *(0.10 \mathrm{~m})=0.25 \mathrm{~J}$

Question of the Day

- If 10 J of energy are stored by stretching a spring 10 cm , how much energy would be stored by stretching it 30 cm ?
- Answer: Since $E_{e l}$ depends upon Δx^{2}, changing the length by a factor of 3 changes the $E_{e l}$ by a factor of $3^{2}=9$.

- A spring pop-up toy is compressed against a surface.
- Where is the energy stored?
- Then, what happens to the energy?
- Answer: Initially the E is stored elastically in the spring, then kinetically by the toy's motion, then gravitationally when at the peak of its trajectory, then kin. as falls down.

Question of the Day

- Describe ways that your catapult illustrates the Law of Conservation of Energy.
- Answer: transfer E into system by pushing on arm and stretching spring, E stored elastically, then E_{k}, then E_{g}

Question of the Day

- Stretching a spring twice as far requires
\qquad times as much force.
- Stretching a spring twice as far requires
\qquad times as much energy.
- Answer: twice as much force, four times as much energy

Question of the Day

- The area on which of these graphs represents energy?
- Answer: Area on Force vs. displacement (Δx or Δy) represents energy.

- Which requires more energy, lifting 9 kg a vertical distance of 2 m , or lifting a 500 g mass a distance of 36 m ?
- Answer: $(9 \mathrm{~kg})(9.8 \mathrm{~N} / \mathrm{kg})(2 \mathrm{~m})=176.4 \mathrm{~J}=$ (.500 kg)(9.8 N/kg)(36 m)

Question of the Day

- A box is being pushed across a floor at a constant velocity. Is energy being transferred to the system?
- Answer: Yes, since force is being applied across a distance, but speed is not increasing, the $E_{\text {therm }}$ in system is increasing.

Question of the Day

- Complete the following:
- If a spring is stretched twice as far, it will store ___ times as much energy elastically.
- If a mass is lifted twice as far, it will store \qquad times as much energy gravitationally.
- If a mass is pushed twice as far across a surface, it will store \qquad times as much energy thermally.
- If a mass is moving twice as fast, it will have __ times as much energy stored kinetically.
- Answer: four, two, two, four

Question of the Day

- The total amount of the energy in the universe is:
a. Increasing
b. Decreasing
c. Constant
- Answer: "c. Constant", The Law of Conservation of Energy, energy is never created or destroyed, only stored or transferred

