Questions of the Day

Oscillating Particle (OP)

Simple Harmonic Motion

Question of the Day

- A mass is oscillating as it is suspended from a spring. If the amplitude, A , of the oscillation was twice as much, then the period of oscillation, T , would be...?
- This means that amplitude and period are
\qquad proportional.
- Answer: unchanged since amplitude and period are not proportional

Question of the Day

- A mass is oscillating as it is suspended from a spring. If the mass is changed to be twice as much, then the period of oscillation will change by a factor of...?
- Answer: Since T is directly proportional to $\sqrt{ } m, T$ would change by a factor of $\sqrt{ } 2$.

Question of the Day

- On each of the axes above, sketch a graph that shows the relationship between T and A, T and m, T and k ?
- Answer: T and A is flatline, T vs. $\sqrt{ } m$ is linear, T vs. $\sqrt{ } 1 / k$ is linear.

Question of the Day

- Sketch a graph that shows the relationship between period and mass for an oscillating particle.
- If the mass is changed from 50 g to 500 g , by what factor will the period change?
- Answer: T vs. $\sqrt{ } m$ is a linear graph, if m changes by a factor of 10 , then T will change by a factor of $\sqrt{ } 10$.

Question of the Day

- Sketch a graph that shows the relationship between period and spring constant for an oscillating particle.
- If the spring constant is changed from $2.5 \mathrm{~N} / \mathrm{m}$ to $25 \mathrm{~N} / \mathrm{m}$, by what factor will the period change?
- Answer: T vs. $\sqrt{ } 1 / k$ is a linear graph, if k changes by a factor of 10 , then T will change by a factor of $\sqrt{ }(1 / 10)$.

Question of the Day

- As the hovercraft is oscillating between A \& C, where is the...
- hovercraft going the fastest?
- hovercraft going the slowest?
- spring stretched/compressed the most?
- spring stretched/compressed the least?
- Answer: fastest at B, slowest at A \& C, stretched most at A \& C, stretched least at B

Question of the Day

- In your oscillating particle lab, you determined that it took 12.7 seconds in order to complete 10 oscillations.
- What is the period of oscillation?
- What is the frequency of oscillation?
- Answer: $T=12.7 \mathrm{~s} / 10$ osc $=1.27 \mathrm{~s} ; f=$ 10 osc / $12.7 \mathrm{~s}=.787$ osc/sec $=.787 \mathrm{~Hz}$

Question of the Day

- Based upon the position vs. time graph for an oscillating particle, draw the corresponding velocity vs. time graph.
- Answer: $1 / 4$ cycle (oscillation) out of phase

Question of the Day

- Draw the position vs. time and force vs. time graphs that correspond with the oscillating particle.
- Answer: see above

