Acids and Bases

What are acids and bases?
-Arrhenius model: Acids produce H^{+}ions and bases produce OH^{-}ions
Example: $\mathrm{HCl} \rightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-}$and $\mathrm{NaOH} \rightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-}$
-Brønsted-Lowry model: Acids are proton $\left(\mathrm{H}^{+}\right)$donors and bases are proton acceptors. This allows for bases that don't have a hydroxide ion.
Conjugate acid: particle formed when a base has accepted a H^{+}ion
Conjugate base: particle formed when an acid has donated a H^{+}ion
Example: $\underset{\text { Acid }}{\mathrm{HA}}{ }_{(\mathrm{aq)}}+\underset{\text { base }}{\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}} \rightarrow \underset{\text { conj. }}{\mathrm{H}_{3} \mathrm{O}^{+}}{ }_{\text {(aq) }}+$ Conj. $^{\mathrm{A}^{-}}$
Acid base
Note: water can be an acid or a base (amphoteric)

Acids and Bases

"Strength of an Acid or Base"

- Strong acids and strong bases completely dissociate -- such as HCl or NaOH -Weak acids and weak bases are mostly undissociated in water -- such as $\mathrm{CH}_{3} \mathrm{COOH}$ (acetic acid) or NH_{3} (ammonia)
-Animation at
http://www.chembio.uoguelph.ca/educmat/chm19104/chemtoons/chemtoons9.htm
-How do you measure strength of an acid and a base?
- K_{a} and K_{b}-- they work just like $\mathrm{K}_{\text {eq }}$
- Bigger = stronger

pH

- $\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
(also written as $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$, both mean the same thing)
-pOH $=-\log \left[\mathrm{OH}^{-}\right]$
$\cdot\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14}=\mathrm{K}_{\mathrm{w}}$ (true at all pHs at
$25^{\circ} \mathrm{C}$, called the ion-product constant or water dissociation constant)
-Thus, $\mathrm{pH}+\mathrm{pOH}=14$

Pure Water?

- So what about pure water? It's neither an acid nor a base. This means $\mathrm{pH}=7$
(neutral). Or in other words, not acid and not base
- If $\mathrm{pH}=7$, then $\left[\mathrm{H}^{+}\right]=10^{-7}$ and $\left[\mathrm{OH}^{-}\right]=10^{-7}$
- So in pure water $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$

pH Scale

Equivalence Point

- When acids and bases react with each other it is called a neutralization reaction.
- Example:
- $\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{NaCl}$ or
- Acid + base \rightarrow water + salt
- Note: if base is a carbonate, CO_{2} will also be produced
- $\mathrm{HCl}+\mathrm{CaCO}_{3} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CaCl}_{2}+\mathrm{CO}_{2}$

Equivalence Point

- Equivalence point is defined as when the number of moles of H^{+}equals the number of moles of OH^{-}
- Equivalence points are determined via a lab technique called titration
- In a titration you add acid to base (or vice versa). The concentration of one is known, and you are determining the concentration of the other.
- You may find equivalence points (also known as an endpoint) using a graph or with an indicator
- To calculate the moles of the unknown, we will use stoichiometry (examples to come later)

Equivalence Point

- Using a pH meter, you can graph how pH changes as you add acid or base. Picture below shows strong base being added to strong acid.
Note pH of equivalence point is 7 .

Titration Curve images from http://www.chemguide.co.uk/physical/acidbaseeqia/phcurves.html

Equivalence Point

- Picture below shows strong acid being added to weak base. Note pH at endpoint is ~ 4.
Titration Curve images from http://www.chemguide.co.uk/physical/acidbaseeqia/phcurves.html

Equivalence Point

- Picture below shows a strong base being added to weak acid. Note pH at endpoint is ~ 9.
Titration Curve images from http://www.chemguide.co.uk/physical/acidbaseeqia/phcurves.html ${ }^{[14}{ }^{14}$

Equivalence Point

- Indicators: You can also find equivalence point by properly selecting an acid base indicator (a substance that changes colors at different pH).
- You will be using methyl orange and phenolphthalein as indicators. Note the pH at which they change colors. When would you use them?
methyl orange

phenolphthalein

Images from http://antoine.frostburg.edu/chem/senese/101/acidbase/indicators.shtml

Normality

- Forgot what normality is?
- Normality is really just a molarity - think of it this way:
Normality = Molarity of H^{+}or OH^{-}
- Or in other words: $\mathrm{N}=(\mathrm{M}) \cdot\left(\#\right.$ of H^{+}or $\left.\mathrm{OH}^{-}\right)$
- $\operatorname{Or} M=(\mathrm{N}) /\left(\#\right.$ of H^{+}or $\left.\mathrm{OH}^{-}\right)$

pH Meters

How Does A pH Electrode Work?

- Cell potential (voltage) depends on concentration. As concentrations vary, so will the voltage (59.2 mV per pH unit at $25^{\circ} \mathrm{C}$)
- A pH electrode is made of an outer glass membrane, glass stem (filled with dilute HCl), and a silver/silver chloride wire.
- The glass is a special type of glass made with alkali metals. The glass membrane allows the metal ions (+) to pass through, but not $\mathrm{H} 3 \mathrm{O}+$ ions. As the number of $\mathrm{H} 3 \mathrm{O}+$ ions in the solution being tested varies, so does the voltage. This voltage is then converted into a pH .
- pH meters must be calibrated and stored in a special solution due to their unique structure

pH Meters

