Atomic Theory

Why do we believe that all matter is made of atoms?

- Law of definite composition: Compounds (like H₂O) contain the same elements in the same proportions by mass
 - regardless of the size of the sample or the source of the compound.

- 2. Law of conservation of mass: In a closed system mass is not created or destroyed (even when atoms change what they are combined with).
- 3. Law of multiple proportions: The mass ratio for different compounds made of the same elements can be expressed in small whole numbers. Example: CO and CO_2 . Ratio of oxygen in CO to oxygen in CO_2 is 1:2.

- John Dalton in 1808 came up with a theory:
- Elements are made of tiny particles (atoms)
- All atoms of a given element are identical
- Atoms of a given element are different than those of another element

- Atoms combine to form compounds. A given compound always has the same relative numbers and types of atoms
- Atoms cannot be created or destroyed. Chemical reactions change how they are grouped.

- J.J. Thomson in the late 1890's showed that atoms can emit tiny negatively charged particles
- Used a cathode ray tube (CRT) to show that these tiny particles were deflected by a negatively charged electrical field.

- William Thomson, AKA: Lord Kelvin Came up with the "plum pudding" model of the atom.
- Reasoned that the atom could be thought of as a "pudding" of positive charge with negatively charged "plums" scattered throughout

- Ernest Rutherford in 1910 proved the existence of the proton with his famous alpha gun and gold foil experiment.
- See page 56 in your book for a diagram
- An alpha particle is a Helium nucleus, or He⁺²
- Alpha particles were shot at a thin gold foil. If the plum pudding model were true, the alpha particles would just crash straight through the foil

- The results of the experiment were quite different – most of the particles went straight through or only suffered a slight deflection.
 HOWEVER – some of the alpha particles were deflected at great angles, and some even bounced back in the direction they came from.
- Rutherford stated, "It was as incredible as if you had fired a 15-inch shell at a piece of tissue paper and it came back and hit you."

Atomic Theory Cont.

 This led to the realization that atoms are mostly made up of space (between the nucleus and electrons) and that they have a positively charged nucleus (that would deflect a positively charged alpha particle)

Bohr Model (1913) – Niels Bohr (Denmark

- Electrons occupy discrete energy levels
- Electrons cannot reside between these levels

Schroedinger (1926) – Modern "quantum theory"

A mathematical theory of orbits

- In the next few slides we'll look at what makes up protons and neutron.
- The fundamental particles that we are most interested in:
 - Electrons
 - Photons
 - Quarks (how do you make a proton or neutron?)
 - You can ignore the other stuff until AP Physics next year!
 - Upcoming charts/images are from http://particleadventure.org

FERMIONS matter constituents spin = 1/2, 3/2, 5/2,							
Leptons spin = 1/2				Quarks spin =1/2			
Flavor	Mass GeV/c ²	Electric charge		Flavor	Approx. Mass GeV/c ²	Electric charge	
𝔑 lightest neutrino*	(0−0.13)×10 ^{−9}	0		U up	0.002	2/3	
e electron	0.000511	-1		d down	0.005	-1/3	
𝔑 middle neutrino*	(0.009-0.13)×10 ⁻⁹	0		C charm	1.3	2/3	
μ muon	0.106	-1		S strange	0.1	-1/3	
𝒫 heaviest neutrino*	(0.04-0.14)×10 ⁻⁹	0		top	173	2/3	
τ tau	1.777	-1		b bottom	4.2	-1/3	

				force carrie	are		
BOSONS spin = 0, 1, 2,							
Unified Electroweak spin = 1				Strong (color) spin =1			
Name	Mass GeV/c ²	Electric charge		Name	Mass GeV/c ²	Electric charge	
y photon	0	0		gluon	0	0	
W	80.39	-1					
W ⁺	80.39	+1					
W bosons Z Z boson	91.188	0					

Baryons qqq and Antibaryons qqq Baryons are fermionic hadrons. These are a few of the many types of baryons.							
Symbol	Name	Quark content	Electric charge	Mass GeV/c ²	Spin		
р	proton	uud	1	0.938	1/2		
p	antiproton	ūūd	-1	0.938	1/2		
n	neutron	udd	0	0.940	1/2		
Λ	lambda	uds	0	1.116	1/2		
Ω^{-}	omega	SSS	-1	1.672	3/2		

Mesons qq Mesons are bosonic hadrons These are a few of the many types of mesons.							
Symbol	Name	Quark content	Electric charge	Mass GeV/c ²	Spin		
π+	pion	ud	+1	0.140	0		
K ⁻	kaon	sū	-1	0.494	0		
ρ+	rho	ud	+1	0.776	1		
\mathbf{B}^0	B-zero	db	0	5.279	0		
η _c	eta-c	cē	0	2.980	0		

Atomic Structure

- Mass of a proton = 1.67265 x 10⁻²⁴ g
- Mass of a neutron = 1.67495 x 10⁻²⁴ g
- Mass of an electron = 9.10953 x 10⁻²⁸ g
- Notice that the mass of a proton is not quite identical to that of a neutron, but for most of our purposes we can consider them equal.
- Especially in larger atoms this difference will cause mass numbers to not be whole numbers.

Forces in the Atom

So what holds an atom together?

 The nucleus (p & n) has an overall positive charge and holds the negatively charged electrons with electromagnetic force

What holds the nucleus together?

- The nucleus contains protons (+) and neutrons (neutral).
- Why would positive and neutral things want to stick to each other?
- The Strong Nuclear Force holds them together
- The Strong Nuclear Force only occurs between particles that are extremely close together
- It is created between the nucleons by the exchange of particles called **mesons**
- I know pretty wild!

