

Colligative Properties

Colligative Property: a property that depends only on the number of solute particles, and not the type of particle.

Examples of some colligative properties:

- 1. Freezing Point Depression
- 2. Boiling Point Elevation
- 3. Vapor Pressure Lowering

We will focus on freezing point and boiling point.

Freezing Point Depression

What happens when something freezes (for example, water)?

- Decrease in energy slows molecules/atoms down
- Intermolecular forces have more effect (atoms have less energy to fight them)
- Frozen water (ice) molecules are in an orderly pattern.

What happens when you add a solute?

Adding Solute

The addition of another substance (a solute) disrupts and prevents water molecules from forming the pattern.

Freezing Point Depression

Freezing Point Depression: adding a substance to a pure

solvent <u>lowers</u> the freezing point

To calculate the **change** in freezing point:

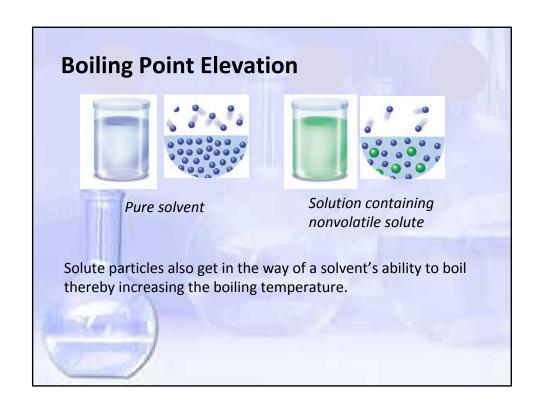
Dissociation factor: How many particles the solute will break into in solution.

$$\Delta T_f = \mathbf{m} \cdot \mathbf{d.f.} \cdot \mathbf{k_f}$$

Change in freezing temp.

molality of solution

constant


Dissociation Factor

Covalent compounds: will not dissociate $\rightarrow d.f. = 1$

Ionic compounds: will dissociate into ions \rightarrow *d.f.* = # of ions per molecule

Dissociation Factor Practice	
What is the dissociation factor for each	
compound?	
1. AIPO ₄	2
$2. N_2O_4$	1
LiCl	2
Cal ₂	3
PCI ₅	1
Pb(OH) ₄	5
XeF ₄	1
Cu ₂ CO ₃	3

Freezing Point Depression Example What is the freezing point of a 2.0 m solution of NaCl in water? k_f = 1.86 °C/m for water

Boiling Point Elevation

Boiling Point Elevation: adding a substance to a pure solvent increases the boiling point

To calculate the **change** in boiling point:

$$\Delta T_b = m \cdot k_b \cdot d.f.$$

Boiling Point Elevation Example

What is the boiling point of a solution containing 100.0 g MgCl₂ dissolved in 250.0 g of water?

k_b = 0.52 °C/m for water

Summary

Freezing point depression

$$\Delta T_f = m^* k_f^* d.f.$$
 $k_f = 1.86$ °C/m for water

Boiling point elevation

$$\Delta T_b = m^* k_b^* d.f.$$
 $k_b = 0.52$ °C/m for water