Quizizz
 Energy Review Quiz - Physics

Name :
Class :
Date :
\qquad
\qquad

1. A spring, with a spring constant of $200 \mathrm{~N} / \mathrm{m}$, is stretched 20 cm . How much energy is stored in the spring?

a) $40,000 \mathrm{~J}$
b) 20 J
\square c) 80 J
d) 4 J
2. A spring is stretched back 0.52 m using 13 N of force. How much energy is stored in the spring?
\square a) 6.76 J
b) $\quad 3.38 \mathrm{~J}$
\square c) $\quad 4.32 \mathrm{~J}$ \square d) 91 J
3. How much energy is stored in this spring when it is stretched 9 cm ? (note the x -axis units are cm , not m)

\square a) 8 Jb) $\quad 0.72 \mathrm{~J}$
\square c) 0.36 Jd) 2.38 J
4. How much energy is stored in a 12 kg box that is on a 2.5 m high book shelf?
\square a) 294 J
b) 30 J
c) 2.5 Jd) 147 J
5. A spring pop-up toy is compressed against a surface.

Where is the energy stored?
a) elastically in the spring

b) thermally in the springc) gravitationally in the springd) kinetically in the spring
6. If 20 J of energy are stored by stretching a spring 5 cm , how much energy would be stored by stretching it 15 cm?
\square a) 20 Jb) 60 J
c) 180 J \square d) 100 J
7. For the area of a graph to represent energy, the Y axis must be \qquad and the X axis must be \qquad .
\square a) Impulse, Displacement \square b) Energy, Time
c) Force, Timed) Force, Displacement
8. What is the spring constant of the spring in this graph? (note the x-axis units are cm , not m)

\square a) $\quad 36 \mathrm{~N} / \mathrm{m}$b) $\quad 72 \mathrm{~N} / \mathrm{m}$
\square c) $\quad 90 \mathrm{~N} / \mathrm{m}$d) $\quad 9 \mathrm{~N} / \mathrm{m}$
9. What are the proper units for the spring constant?a) $\quad \mathrm{m} / \mathrm{N}$b) $\quad N / m$c) $\quad \mathrm{kg}^{\star} \mathrm{m} / \mathrm{s}$d) J
10. What are the proper units for energy?a) kb) N
\square c) $\quad \mathrm{m} / \mathrm{s}$ \square d) J
11. If a spring is stretched twice as far, it will store \qquad times as much energy elastically.a) 2b) 4
\square c) 8d) 16
12. If a mass is lifted twice as far, it will store \qquad times as much energy gravitationally.
\square a) 2
b) 4
\square c) 8d) 16
13. If a mass is pushed twice as far across a surface, it will store \qquad times as much energy thermally.
\square a) 2
b) 4
\square c) 8 \square d) 16
14. If a mass is moving twice as fast, it will have \qquad times as much energy stored kinetically.a) 2 \square b) 4c) 8d) 16
15. The total amount of the energy in the universe is:
\square a) increasingb) decreasing
\square c) constant
16. A 10 kg box is pushed across the floor with a coefficient of friction of 0.5 over a distance of 4 m . How much thermal energy was dissipated (released)?
\square a) 5 Jb) 196 Jc) 40 J \square d) 98 J
17. A 1000 kg car is moving $30 \mathrm{~m} / \mathrm{s}$. How much kinetic energy does it have?a) 1000 J \square b) $30,000 \mathrm{~J}$c) $15,000 \mathrm{~J}$d) $450,000 \mathrm{~J}$
18. A 1000 kg car is moving with $600,000 \mathrm{~J}$ of energy. How fast is it going?
\square a) $34.6 \mathrm{~m} / \mathrm{s}$
b) $\quad 64.3 \mathrm{~m} / \mathrm{s}$
\square c) $\quad 600 \mathrm{~m} / \mathrm{s}$d) $1200 \mathrm{~m} / \mathrm{s}$
19. A roller coaster starts stopped at the top of a hill. It then rolls down the frictionless track. Then brakes are applied to bring it to a stop. What types of energy transformations does it go through?
\square
a) Nuclear, electric, chemicalb) Kinetic, Thermal, Gravitational
c) Gravitational, Kinetic, Thermal
d) Elastic, Kinetic, Thermal
20. A 2.0 kg cat jumps down from a 2 m high fence. What will be the cat's speed right before it hits the ground?
\square a) $\quad 2.0 \mathrm{~m} / \mathrm{s}$
b) $\quad 39 \mathrm{~m} / \mathrm{s}$
\square c) $\quad 6.3 \mathrm{~m} / \mathrm{s}$
d) $\quad 15.3 \mathrm{~m} / \mathrm{s}$
21. A 0.025 kg dart rests against a spring that has been compressed 0.050 meters. The spring constant is $250 \mathrm{~N} / \mathrm{m}$. If the dart is fired vertically, how high will it go? (ignore air resistance)
\square a) $\quad 0.3 \mathrm{~m}$
b) 1.28 m
\square c) $\quad 2.75 \mathrm{~m}$ \square d) $\quad 4.87 \mathrm{~m}$
22. A 0.025 kg dart rests against a spring that has been compressed 0.050 meters. The spring constant is $250 \mathrm{~N} / \mathrm{m}$. What is the maximum velocity of the dart after the spring has transferred its energy to it?
\square a) $5 \mathrm{~m} / \mathrm{s}$b) $25 \mathrm{~m} / \mathrm{s}$
c) $\quad 50 \mathrm{~m} / \mathrm{s}$d) $100 \mathrm{~m} / \mathrm{s}$

Answer Key

1. d
2. b
3. c
4. a
5. a
6. c
7. d
8. c
9. b
10. d
11. b
12. a
13. a
14. b
15. c
16. b
17. d
18. a
19. c
20. c
21. b
22. a
