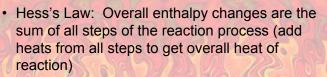
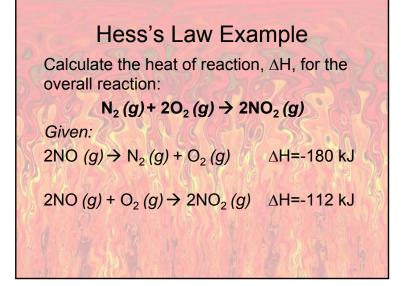


Enthalpy Cont.

• Enthalpy is the energy content of a system (H or ∆H if talking about change)


$$\Delta H = \Sigma H_{\text{products}} - \Sigma H_{\text{reactants}}$$

Note: the H for pure elements is zero.


Enthalpy ExampleCalculate ΔH for the following reaction:
 $(\mathcal{H}_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(f))$ $\overline{M_4(g)} + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(f)$ $\overline{M_4(g)} + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(f)$ $\overline{M_4(g)} + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(f)$

Daily Q

- When potassium chloride reacts with oxygen under the right conditions, potassium chlorate is formed:
- 2 KCI + 3 O₂ → 2KCIO₃
- Given that the heat of formation of potassium chloride is –436 kJ/mol and the heat of formation of potassium chlorate is –391 kJ/mol, determine the heat of reaction.

- If a reaction is reversed, the sign of ΔH is also reversed
- The magnitude of ∆H depends on the quantities of reactants and products → this means you need to multiply ∆H by the coefficient for that substance
- Hess's Law Practice Website:
- <u>http://chemistry.csudh.edu/lechelpcs/Hesslawcsn7.html</u>

Hess's Law Practice		
Calculate the heat of reaction, ΔH , for the overall reaction:		
$2 \operatorname{S}(s) + 3 \operatorname{O}_2(g) \rightarrow 2 \operatorname{SO}_3(g)$		
Given: S (s) + $O_2(g) \rightarrow SO_2(g)$	∆H = -297 kJ	
$2 SO_3(g) \rightarrow 2 SO_2(g) + O_2(g)$	∆H = 198 kJ	
	1223 6	

Hess's Law Exit Slip			
Calculate ΔH for this reaction:			
$PbCl_2(s) + Cl_2(g) \rightarrow PbCl_4(l)$			
Given:		0.722 670	
Pb (s) + $\operatorname{Cl}_2(g) \to \operatorname{P}$	bCl ₂ (s)	Δ H = - 359.4 kJ	
Pb (s) + 2 Cl ₂ (g) \rightarrow	PbCl ₄ (I)	Δ H = - 329.3 kJ	
CAR ANTA	ISD MOD	BALS AN A	
12 1 2 2 2 2		1.7. (2.2.1.5)	
11210		1.5 C. S. So. S.	
CENERAL SINE B		E B C. P. MU	