Chemical Equilibrium

-Think of equilibrium as a state of balance.

- Imagine a see-saw that is at rest with a child on each
end. This is equilibrium.
-As soon as one of the children moves, the other child will have to react to keep the seesaw at rest.
-Chemical equilibrium works in a similar fashion

Chemical Equilibrium

- Many reactions are reversible - this means they can go in forward and reverse directions
- Chemical Equilibrium is when the rate forward = rate reverse (NOT when the concentrations are equal)

Equilibrium Constant $\mathrm{K}_{\text {eq }}$

- Example \#1
$\mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})} \leftrightarrow 2 \mathrm{HI}_{(\mathrm{g})}$

$$
\mathrm{K}_{\mathrm{eq}}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}
$$

- Example \#2
$\mathrm{CaCO}_{3(\mathrm{~s})} \leftrightarrow \mathrm{CaO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})}$
$\mathrm{K}_{\mathrm{eq}}=\frac{[\mathrm{II}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}$

$$
\mathrm{K}_{\mathrm{eq}}=\frac{\left[\mathrm{CO}_{2}\right][1]}{[1]} \text { or } \mathrm{K}_{\mathrm{eq}}=\left[\mathrm{CO}_{2}\right]
$$

Equilibrium Constant $\mathrm{K}_{\text {eq }}$

- What does the equilibrium constant tell us?
- Remember that the equilibrium constant is roughly:

$$
\mathrm{K}_{\mathrm{eq}}=\frac{\text { [products }]}{[\text { reactants }]}
$$

- A reaction whose equilibrium favors the formation of more products than reactants will have a higher keq than one that favors the reactants.
- In other words, the bigger the $\mathrm{K}_{\text {eq }}$, the more the products are favored. The smaller the $\mathrm{K}_{\text {eq }}$, the more the reactants are favored.

Le Châtelier's Principle

- Remember that chemical equilibrium is like a see saw.
- Once a reaction has reached equilibrium, if you were to change the pressure, temperature, or concentration of a substance in the system, the system will respond to regain equilibrium.
- As long as temperature is held constant, the $\mathrm{K}_{\text {eq }}$ value will remain constant in spite of the changes in pressure or concentration

Le Châtelier's Principle and Change in Concentration

- Assume constant pressure and temperature if we're changing concentration
- Increasing concentration shifts equilibrium away from the side where a substance is being added
- Decreasing concentration shifts equilibrium toward the side where a substance is being removed
- Example:
$\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \leftrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}$
- If we add H_{2} which way will equilibrium shift?
- Away from the left - this means more NH_{3} will form and N_{2} will be used up (less N_{2})

Le Châtelier's Principle and Change in Concentration

- We call equilibrium systems that contain more than one phase "heterogeneous". Consider below a situation where changing concentration does not affect equilibrium..
- Remember how solids and liquids do not appear in the $\mathrm{K}_{\text {eq }}$ expression? This means they do not affect equilibrium position.
- Example: $\mathrm{NaCl}_{(\mathrm{s})} \leftrightarrow \mathrm{Na}^{+}{ }_{(\text {(q) })}+\mathrm{Cl}_{(\mathrm{aq})}$
- This represents a saturated solution of NaCl (all 3 substances are present, therefore it must be saturated). Adding more NaCl solid will not produce more Na^{+}or Cl^{-}ions.
You could, however, get more NaCl by adding either Na^{+}or Cl - ions
- Summary: Changing amounts of solids or liquids will not affect the equilibrium position (in other words, changing a solid or liquid will not change the concentration of any other substances). On the other hand, adding gases or aqueous substances can produce more solid or liquid.

Le Châtelier's Principle and Change in Pressure

- Assume constant concentration and temperature if we're changing pressure
- Increasing pressure shifts equilibrium toward the side that has fewer gas molecules
- Decreasing pressure shifts equilibrium toward the side that has more gas molecules
- Example:
$\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \leftrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}$
- If we increase the pressure what will happen to the NH_{3} concentration?
- The NH_{3} side has 2 gas molecules, the other side has 4
- Equilibrium will shift toward the right with increased pressure, which means more NH_{3} will form.

Le Châtelier's Principle and Change in Temperature

- Assume constant concentration and pressure if we're changing temperature
- $\mathrm{K}_{\text {eq }}$ value will change with change in temperature
- Treat energy like a substance, then go by the rule for concentration
- Increased temperature = increased energy
- Decreased temperature = decreased energy
- Find the side of the equation that contains the energy (endothermic = energy on the left, exothermic = energy on the right)

Le Châtelier's Principle and Change in Temperature

- Example:
$\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \leftrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}+92 \mathrm{~kJ}$ (exothermic)
- What will happen to the concentration of NH_{3} if we heat up the container?
- Energy is on the right, so it's like we're adding a substance to the right side of the equation \rightarrow equilibrium will shift left
- A shift to the left will mean LESS NH_{3}

Le Châtelier's Principle and Change in Temperature

- Keq will change with temperature change
- Remember: $\mathrm{K}_{\text {eq }}$ is roughly:

$$
\mathrm{K}_{\mathrm{eq}}=\frac{\text { [products] }}{[\text { reactants }]}
$$

- A temperature change that shifts equilibrium to the right (products) will increase $\mathrm{K}_{\text {eq }}$
- A temperature change that shifts equilibrium to the left (reactants) will decrease $\mathrm{K}_{\text {eq }}$

Equilibrium Visualizations

- http://www.chem.arizona.edu/~jpollard/fido/fid o.html

Equilibrium Book Problems

- Read Ch. 15 (some parts we won't cover)
- Assigned: 15.2, 15.5,15.9, 15.14, 15.52, 15.56

```
:#:
#
```

