

Binary Ionic Compounds

Name to Formula

Binary Ionic Name to Formula

- · Names will...
 - end in "-ide" (except "hydroxide and cyanide")
- To write formulas:
 - 1. Symbol & charge of the metal cation
 - 2. Symbol & charge of the non-metal anion
 - 3. Add more of the cations and/or anions until you have a neutral compound 8 valence electrons!
 - 4. Use subscripts to show how many of each type of ion you have

Example

Sodium fluoride

Let's Practice

Example: Write the following chemical formulas Cesium chloride

Potassium oxide

Calcium sulfide

Lithium nitride

Let's Practice

Example: Write the following chemical formulas Cesium chloride

CSCI

Potassium oxide

K₂O

Calcium sulfide

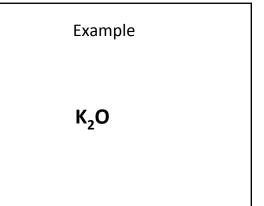
CaS

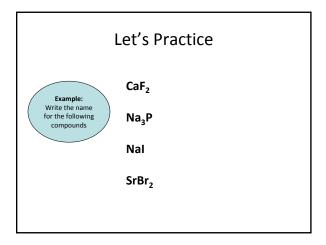
Lithium nitride

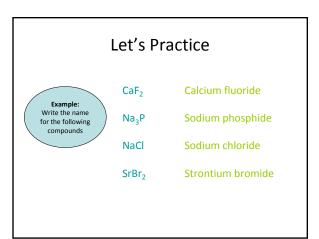
Li₃N

Binary Ionic CompoundsFormula to Name

Binary Ionic Formula to Name


- Formula will...
 - Contain only 2 elements
 - Contain a metal cation and a non-metal anion
- To name:


Metal name + nonmetal name ending in -ide


The subscripts in the formula do not matter when naming this type

Example

CaBr₂

Multivalent Ionic Compounds

Multivalent Metal: a metal that has more than one possibility for cationic (positive) charge

Multivalent (Transition) Metals

The Appendix of your book (Page A-2) has the following chart

Common multivalent metals and their charges

Multivalent Ionic Compounds

Name to Formula

Multivalent Metals Name to Formula

- Names will...
 - contain roman numerals
- To write formulas:
 - Same as binary, except Roman numerals tell the charge of the metal cation

Example #5

Iron (III) oxide

Example #6

Copper (I) nitride

Let's Practice

Example: Write the following chemical formulas Iron (II) nitride

Copper (I) chloride

Lead (IV) sulfide

Tin (II) oxide

Let's Practice

Example: Write the following chemical formulas Iron (II) nitride

Fe₃N₂

Copper (I) chloride

CuCl

Lead (IV) sulfide

PbS₂

Tin (II) oxide

SnO

Multivalent Ionic Compounds
Formula to Name

Multivalent Metals Formula to Name

- Formulas will:
 - Contain a transition metal
- To name:
 - 1. Name of the metal cation
 - 2. Name of the anion
 - 3. Determine total negative charge
 - 4. Total negative charge must = total positive charge
 - 5. Determine the charge on each metal atom
 - 6. Write the charge in roman numerals in parenthesis after the metal's name

Example #8

CuCl₂

Example #9

 $Fe_2(CO_3)_3$

Let's Practice

Example: Write the name for the following compounds PbCl₂

PbCl₄

MnO

 Mn_2O_7

Let's Practice

Example: Write the name for the following compounds PbCl₂ Lead (II) chloride

PbCl₄ Lead (IV) chloride

MnO Manganese (II) oxide

Mn₂O₃ Manganese (VII) oxide

Polyatomic Ionic Compounds

Polyatomic Ions

Polyatomic Ion: *more than one atom* that together have a charge

Polyatomic Ionic Compound: compound containing at least one polyatomic ion

Help Identifying Polyatomic Ions

- Only cation polyatomic ion: NH₄
- All other polyatomic ions are anions (back-half)
- Subscripts must match exactly as it appears on your list
- If there are parenthesis, the polyatomic ion is inside

Practice Identifying Polyatomic Ions

Example:
Identify and
name the
polyatomic ion in
each compound

NaNO₃

NH₄CI

Ca(OH)₂

 $(NH_4)_3PO_4$

 K_2CO_3

Practice Identifying Polyatomic Ions

Example: Identify and name the polyatomic ion in each compound NaNO₃

Nitrate

NH₄CI

Ammonium

Ca(OH)₂

Hydroxide

NH₄)₃PO₄

Ammonium & phosphate

K₂CO₃ Carbonate

Polyatomic Ionic Compounds

Name to Formula

Polyatomic Ionic Name to Formula

- Names
 - Do not end with "-ide" (except hydroxide & cyanide)
 - Do not use covalent prefixes
- To write formulas:
 - 1. Write the symbol & charge of the cation & anion
 - 2. Add additional cations or anions to have a neutral compound
 - 3. Use subscripts to show the number of ion

When using subscripts with a polyatomic ion, you must put the polyatomic ion in parenthesis.

Example #3

Sodium carbonate

Example #4

Magnesium nitrate

Let's Practice

Example: Write the following chemical formulas Sodium nitrate

Calcium chlorate

Potassium sulfite

Calcium hydroxide

Let's Practice

Example: Write the following chemical formulas Sodium nitrate NaNO₃

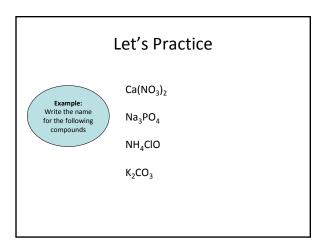
Calcium chlorate Ca(ClO₃)₂

Potassium sulfite K₂SO₃

Calcium hydroxide Ca(OH)₂

Polyatomic Ionic Compounds
Formula to Name

Polyatomic Ionic Formula to Name


- Formulas will...
 - Contain more than 2 elements (not starting with H)
 - at least 1 metal and 1 non-metal
- To name:
 - 1. Name of the cation
 - 2. If the anion is a polyatomic ion, write the polyatomic ion's name just as it is
 - 3. If the anion is a single non-metal element, use "-ide"

Example #1

NaNO₃

Example #2

(NH₄)₂S

