Quizizz
 Non-Zero Total Force Review

Name:
Class :
Date :
\qquad
. If a hot air balloon rider is moving up at constant velocity, the total force on the person is:

a) upb) down
\square c) zerod) depends how heavy the person is
2. If a hot air balloon rider is moving up faster and faster, the total force on the person is:

a) up
b) down
c) zerod) depends how heavy the person is
\square
3. If a hot air balloon rider is moving up but slowing down, the total force on the person is:

a) upb) downc) zero

d) depends how heavy the
person is
4. If a hot air balloon rider is moving down and speeding up, the total force on the person is:

a) upb) down
\square c) zero \square
d) depends how heavy the
person is
5. If a hot air balloon rider is moving down and slowing to a stop, the total force on the person is:
\square a) up \square b) down
\square c) zero \square
d) depends how heavy the person is
6. Suppose that a cart is accelerating at a rate of $6 \mathrm{~m} / \mathrm{s}^{2}$. If the force is doubled, then what is the new acceleration of the sled?
\square a) $6 \mathrm{~m} / \mathrm{s}^{2}$b) $\quad 3 \mathrm{~m} / \mathrm{s}^{2}$
\square c) $2 \mathrm{~m} / \mathrm{s}^{2}$d) $12 \mathrm{~m} / \mathrm{s}^{2}$
7. Suppose that a cart is accelerating at a rate of $6 \mathrm{~m} / \mathrm{s}^{2}$. If the mass is doubled, then what is the new acceleration of the sled?
a) $6 \mathrm{~m} / \mathrm{s}^{2}$
b) $\quad 3 \mathrm{~m} / \mathrm{s}^{2}$
\square c) $2 \mathrm{~m} / \mathrm{s}^{2}$
d) $12 \mathrm{~m} / \mathrm{s}^{2}$
8. A person is riding Power Tower at Valleyfair while it is moving up and slowing to a stop. What sensation of weight would this person feel?
\square a) lighter than usualb) heavier than usual
\square c) usual weight \square d) weightless
9. A person is riding Power Tower at Valleyfair while it is moving down and slowing to a stop. What sensation of weight would this person feel?
\square a) lighter than usual \square b) heavier than usual
\square c) usual weight \square d) weightless
10. A 1500 kg Ford Truck can go from rest to a speed of $30 \mathrm{~m} / \mathrm{s}$ in 8.7 s . What total force must act upon the car in order to make this happen?a) 261 Nb) $\quad 5160 \mathrm{~N}$
c) $\quad 14700 \mathrm{~N}$d) $\quad 19860 \mathrm{~N}$
11. A 10 kg drone accelerates upward at $2.0 \mathrm{~m} / \mathrm{s}^{2}$. What force (push) is exerted by the air on the drone? (hint: draw the vector addition diagram to help solve)
\square a) 98 N
b) $\quad 20 \mathrm{~N}$
c) $\quad 118 \mathrm{~N}$ \square d) 78
12. An 80 kg person is riding an elevator that is accelerating upward at a rate of $1.0 \mathrm{~m} / \mathrm{s}^{2}$. Calculate the force gravity on the person.
\square a) 80 N
b) $\quad 180 \mathrm{~N}$
\square c) $\quad 864 \mathrm{~N}$ \square d) $\quad 784 \mathrm{~N}$
13. An 80 kg person is riding an elevator that is accelerating upward at a rate of $1.0 \mathrm{~m} / \mathrm{s}^{2}$. Calculate the total force, $\boldsymbol{\Sigma F}$, on the person.
a) 80 N
b) $\quad 180 \mathrm{~N}$
c) $\quad 864 \mathrm{~N}$
d) $\quad 784 \mathrm{~N}$

保
偮

Answer Key

1. c
2. a
3. b
4. b
5. a
6. d
7. b
8. a
9. b
10. d
11. c
12. d
13. a
14. c
