

IMPULSE-MOMENTUM

1. Compare the momentum of ball A to ball B .
(a.) $A>B$
b. $\quad A<B$
c. $\quad A=B$
d. insufficient information for a comparison
2. Compare the momentum of ball A to ball B .
a. $\quad A>B$
b. $A<B$
c. $\quad A=B$
d. insufficient information for a comparison

3. A force is applied to a ball according to the graph shown
a. What impulse is delivered to the ball?
(Area)
b. The above ball has a mass of 500 g and was traveling at $-20 \mathrm{~m} / \mathrm{s}$ before it got hit. What will be the ball's change in momentum?

$$
\Delta v=V_{f}-V_{i}
$$

d. What will be its new velocity?

$$
\begin{aligned}
& \text { d. What will be its new velocity? } \quad \Delta V=V_{f}-V_{i} 28=-20 \quad 28=V_{f}+20 \quad V_{f}=8 \mathrm{~m} \\
& \text { e. Based upon the graph, if an object starts from rest and has a mass of } 5 \mathrm{~kg} \text {, what will be } \\
& \text { its final velocity? } \Delta p=m \Delta V \\
& \qquad 14=(5 \mathrm{~kg})\left(V_{f}-V_{i}\right) \frac{14}{5}=V_{f}-0 \\
& V_{f}=2.8 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$ its final velocity?

4. Objects A and B collide. How does the force from Object A on Object B compare to the force of Object B on Object A? Explain.
The for re between objects is equal \& opposite (Newton's $\left.\begin{array}{l}\text { nd taw }\end{array}\right)$
5. Using what you know about impulse and momentum, how can you change the amount of force applied to an object in a collision?

Increase or decrease the time for the collision $I=F \Delta t$
6. A bumper car with Mickey as the driver (total mass $=100 \mathrm{~kg}$), moving at $10.0 \mathrm{~m} / \mathrm{s}$, collides with a (elastic) stationary bumper car with Minnie as the driver (total mass $=75 \mathrm{~kg}$). After the collision, Mickey's \rightarrow car has a velocity of $-2.0 \mathrm{~m} / \mathrm{s}$. What is the velocity of Minnie's car after the collision?

$$
\begin{aligned}
& 100(10)+75(0)=(100)(-2)+75 v_{6} \\
& 1000=-200+75 v_{6} \rightarrow 1200=75 v_{6} \\
& +200+200
\end{aligned}
$$

5. A 0.058 kg tennis ball is hit at $50 \mathrm{~m} / \mathrm{s}$ and hit back at $55 \mathrm{~m} / \mathrm{s}$. What is the tennis ball's change in
\qquad momentum?

$$
v_{i}=50
$$

$$
\Delta p=m \Delta v=(.058 \mathrm{~kg})(-55-50)=-6.09 \mathrm{~kg} / \mathrm{s}
$$

$$
\breve{V_{f}}=-55 \mathrm{~m} / \mathrm{s}
$$

6. An empty train car, coasting at $7 \mathrm{~m} / \mathrm{s}$, strikes a loaded car that is stationary and the cars link together. Each of the cars has a mass of 5000 kg when empty, and the loaded car contains $10,000 \mathrm{~kg}$ of cargo. With what speed does the combination of the two cars start to move?

7. What question would you ask to determine if you have the following type of energy?

- Elastic (Eel) \qquad
- Kinetic (Bk) $\frac{1}{2} m v^{2}$
- Gravitational (Eg) $m g \Delta y$
- Thermal (Eth) $F_{f} \Delta x$

8. Be able to use the equations to determine energy changes.

- Ex: If you quadruple the height an object is lifted, by what factor will the energy change? $\times 4$

$$
E g=m g(4)
$$

- If you are moving at half the speed by what factor will that change the energy? $x \frac{1}{4}$

$$
E_{k}=\frac{1}{2} m\left(\frac{1}{2}\right)^{\text {dy }}
$$

- If you stretch a spring 3 times as far, by what factor will that change the energy? x

$$
E_{c t}=\frac{1}{2} k x^{2} \text {, by what factor win the }
$$

9. A 1.5 kg cat jumps down from a 2.0 meter high fence.
a. What is the cat's gravitational energy at the top of the fence?

$$
E_{j}=(1.5)(9.8)(2)=29.4 \mathrm{~J}
$$

b. What will be the speed with which the cat lands on the ground?

$$
\begin{aligned}
& \qquad E_{g}=E_{k}=\frac{1}{2} m V^{2} \quad 29.4=\frac{1}{2}(1.5) \mathrm{V}^{2} \quad V=6 \\
& \text { 10. A } 25 \mathrm{~g} \text { dart rests against a spring that has been compressed } 0.050 \text { meters. } \\
& \text { If } 1.25 \mathrm{~J} \text { of energy was transferred to the spring as it was compressed, what is its spring } \\
& \text { constant? } \quad E_{\mu}=\frac{1}{2} k x^{2} \\
& 1.25 J=\frac{1}{2} k(.050 \mathrm{~m})^{2}
\end{aligned}
$$

$\Delta x=0.050 \mathrm{~m}$

C. constant?
d. What is the maximum velocity of the dart after the spring has transterredits energy to it?

$$
E_{e l}=E_{k} \quad 1.25=\frac{1}{2} m v^{2} \rightarrow 1.25=\frac{1}{2}(.025 \mathrm{~kg}) v^{2}
$$

e. If the dart is fired vertically, how high will it go? $\sqrt{100}=\sqrt{V^{2}} \quad V=10 \mathrm{~m} / \mathrm{s}$

$$
\begin{array}{ll}
E_{d 1}=E_{g} & 1.25 \mathrm{~J}=m g \Delta y \\
& 1.25=(.025 \mathrm{~kg})(9.8) \Delta y
\end{array}
$$

OSCILLATING PARTICLE
Use the diagram to the right to answer the following questions:
11. What is the hovercraft's amplitude of oscillation?
20.0 cm

12. If the period of oscillation is 1 second, and the spring constant is quadrupled, what will be the new period? $\Gamma \propto \sqrt{\frac{1}{4}} \sqrt{\frac{1}{4}} \times l_{\sec }=\left[\frac{1}{2} \omega .5 \sec \right] \Gamma \propto \sqrt{m} \quad T \propto \sqrt{\frac{1}{k}}$
... what if the mass had been quadrupled?

$$
T \propto \sqrt{m} \quad T \propto \sqrt{4} \quad \sqrt{4} \times 1 \sec =2 \sec
$$

13. When is the velocity of the hovercraft a maximum? When is it a minimum?
14. When is the elastic energy at a maximum? When is it a minimum? (Compressed or stretcheclspring) $A \& C$
15. When is the kinetic energy at a maximum? When is it a minimum? (moving)

$$
B
$$

$A \neq C$
16. If a mass completes 30 oscillations in 15 seconds, what is the frequency?

What is the period?

$$
30 \text { oscill } / 15 \mathrm{sec}=2 \mathrm{~Hz}
$$

$$
T=\frac{1}{f}=\frac{1}{2}=0.5 \sec
$$

WAVES
17. How do the following factors affect wave speed?

- Wavelength? No effect
- Frequency? No effect
- Tension? Tension = faster nave
- Linear Density? \uparrow Linear density = Slower wave
- Amplitude? No effort

18. Describe the principle of superposition and difference between constructive and destructive interference. Superposition is when Waves add together.

Constructive = creates a Larger wave
Destructive = Cancels out waves.
19.

- Draw the pulse as it returns after reflecting from a free end (left box) and a fixed end (right box).

20. Draw the first three modes for a wave on a string that is 50 cm long and fill in the chart below.

Sound
24. Determine the following about the FFT graph:

- H th $^{\text {th }}$ Harm.
- Tuning fork on vice?
- Peak frequency? $2580 \mathrm{~Hz}, 50 \mathrm{~Hz}$
- Fundamental Frequency? \uparrow on 50 Hz
- $4^{\text {th }}$ overtone? $\sim 720 \mathrm{~Hz}$
- $4^{\text {th }}$ harmonic? $\sim 580 \mathrm{~Hz}$

25. Calculate the beat frequency for the graph to the right:

$$
\begin{aligned}
& \text { frequency for the } \quad \frac{4 \text { outs }}{40 \mathrm{~Hz}} \\
& 0.10 \mathrm{sec}
\end{aligned}
$$

26. Describe the relationship between frequency and wavelength. inverse

$$
f \propto \frac{1}{\lambda} \quad \lambda \propto \frac{1}{f}
$$

27. How are sound waves different from a fan blowing air? Sound waves transport energy but not air Particles.
28. Draw the first three modes for a tube open at each end. Label the nodes and antinodes.

	Diagram	$1^{\text {st Mode }}$	$2^{\text {nd }}$ Mode
\# of Waves	$1 / 2$		

29. Draw the first three modes for a tube closed at one end (as in the Speed of Sound in air lab tuning forks and tubes in water)

Diagram	$1^{\text {st }}$ Mode	$2^{\text {nd }}$ Mode	$3^{\text {rd }}$ Mode
\# of Waves	$1 / 4$		

30. Label the following Doppler effect wave simulations using the following choices (use each once):
A. The object is moving slower than the speed of the waves
B. The object is not moving
C. The object is moving faster than the speed of the waves
D. The object is moving at the same speed as the waves

A

$V_{\text {sound }}=345$ 31. Two trains carry identical whistles that emit a sound with a frequency of $500 . \mathrm{Hz}$ when measured at rest. The trains approach an observer standing between two sets of tracks (see sketch) at velocities $V_{A}=40 \mathrm{~m} / \mathrm{s}$ and $V_{B}=20 \mathrm{~m} / \mathrm{s}$. What are the frequencies that the observer will hear? What will be the beat frequency? Train A then passes the observer and is moving away while Train B is still approaching. What will be the beat frequency heard by the observer?

$$
\begin{aligned}
& \text { Beat freq }=\frac{566-531}{35 \mathrm{~Hz}} \\
& =35 \mathrm{~Hz} \\
& f_{B}^{\prime}=500\left(\frac{345+0}{345-20}\right)-531 \mathrm{~Hz} \\
& f_{\text {Away }}^{\prime}=(500)\left(\frac{345+0}{345+40}\right)=4448 \mathrm{~Hz} \begin{array}{r}
\text { New beat } \\
\text { great }
\end{array}=531-448=83 \mathrm{~Hz}
\end{aligned}
$$

