

Reaction Rates

- An example (from <u>http://www.chemguide.co.uk/</u>) where changing concentration affects the rate of reaction
- "Suppose that at any one time 1 in a million particles have enough energy to equal or exceed the activation energy. If you had 100 million particles, 100 of them would react. If you had 200 million particles in the same volume, 200 of them would now react. The rate of reaction has doubled by doubling the concentration."

Reaction Rates

- When doesn't changing the concentration affect the rate of reaction?
 - When a catalyst is already making the reaction happen as fast as possible
 - Certain multi-step reactions
 - Consider the following 2-step reaction:
 - $-A \rightarrow X + Y$ (very slow)
 - $-X + B \rightarrow Z + Q$ (very fast)
 - The overall rate will be determined by the slow step in this case it will all depend on how fast A splits into X and Y
 - If you increase the concentration of B, it may speed up the 2nd step, but the overall reaction will still be waiting for the first step to finish.
 - So for this reaction we say that step 1 is the "rate determining step"

Reaction Rates

- Rate equations
 - Orders of reaction are found experimentally
 - To do this, you manipulate the concentrations to see how the rates are affected
 - Rates are measured in M/s (change in Molarity per second)

Exa Hyp	Rate Law and Order Example 1: Hypothetical reaction $A + B + C \rightarrow D$								
	Trial [A] [B] [C] Rate (M/sec)								
	1	0.1	0.1	0.05	1.52 x 10 ⁻⁵				
	2	0.1	0.3	0.05	1.52 x 10 ⁻⁵				
	3	0.2	0.3	0.05	3.04 x 10 ⁻⁵				
	4 0.2 0.3 0.1 6.08 x 10 ⁻⁵								
Wha	at happe	ens to	o rate	e whe	n [A] doubles?				
Wha	at happe	ens to	o rate	e whe	n [B] triples?				
Wha	at happe	ens to	o rate	e whe	n [C] doubles?				

Rate Law and Order

Trial	[A]	[B]	[C]	Rate (M/sec)
1	0.1	0.1	0.05	1.52 x 10 ⁻⁵
2	0.1	0.3	0.05	1.52 x 10 ⁻⁵
3	0.2	0.3	0.05	3.04 x 10 ⁻⁵
4	0.2	0.3	0.1	6.08 x 10 ⁻⁵

What happens to rate when [A] doubles?

➢Rate doubles

≻X=1

>So this reaction is said to be first order with respect to A >We say [A]¹

Rate Law and Order Trial [B] [C] [A] Rate (M/sec) 0.1 0.1 0.05 1.52 x 10-5 1 2 0.1 0.3 0.05 1.52 x 10⁻⁵ 3 0.2 0.3 0.05 3.04 x 10⁻⁵ 0.2 0.3 6.08 x 10⁻⁵ 4 0.1 >What happens to rate when [B] triples? ➢Rate stays the same! > So from rate≈ [B]^y then [3]^y = 1, y = ? ≻y=0 >So this reaction is said to be zero order with respect to B (this means [B] drops out of our rate equation [B]⁰

F	Rate	Law	/ and	Order
[A]	[B]	[C]	Rate (M/s	ec)

Trial	[A]	[B]	[C]	Rate (M/sec)
1	0.1	0.1	0.05	1.52 x 10 ⁻⁵
2	0.1	0.3	0.05	1.52 x 10 ⁻⁵
3	0.2	0.3	0.05	3.04 x 10 ⁻⁵
4	0.2	0.3	0.1	6.08 x 10 ⁻⁵

>What happens to rate when [C] doubles?

➢Rate doubles

So from rate≈ $[C]^{z}$ then $[2]^{z} = 2, z = ?$ >z=1

>So this reaction is said to be first order with respect to C >We say [C]¹

		F	Rate	Lav	v and Order			
	Trial	[A]	[B]	[C]	Rate (M/sec)			
	1	0.1	0.1	0.05	1.52 x 10 ⁻⁵			
	2	0.1	0.3	0.05	1.52 x 10 ⁻⁵			
	3	0.2	0.3	0.05	3.04 x 10 ⁻⁵			
	4	0.2	0.3	0.1	6.08 x 10 ⁻⁵			
S	ummary:	-1	0 1					
F	Rate = k[A] [B]	°[C]	, but [B]° = 1 so it drops out			
Т	hus Rate	e = k[/	4] ¹ [C]	and the second s			
tł	ne overal	rate	orde	is 2 (sum of A, B, C orders)			
S	Solve for k: Using data from trial 1:							
	$k = \frac{ra}{r+r^{1}}$	te			$k = \frac{1.52 \times 10^{-5}}{10.110.051} = 0.00304 \frac{1}{M_{\odot}}$			
	$[A]^{r}$	[C] ¹			[0.1][0.05] M•sec			

	Rate Law and Order							
Example 2								
Trial	[A]	[B]	[C]	Rate (M/sec)				
1	0.1	0.1	0.1	0.01				
2	0.1	0.1	0.2	0.01				
3	0.1	0.2	0.1	0.02				
4	0.2	0.2	0.1	0.08				
What h	What happens to rate when [A] doubles?							
What h	What happens to rate when [B] doubles?							
What h	napp <mark>ens</mark>	to rate v	when [C]	doubles?				

Thai	[A]	[B]	[C]	Rate (M/sec)
1	0.1	0.1	0.1	0.01
2	0.1	0.1	0.2	0.01
3	0.1	0.2	0.1	0.02
4	0.2	0.2	0.1	0.08
≻R	ate quadi	uples (fa	actor of 4)	
≻R	ate quadı So from ra >X=2 >So this	ruples (fa ate≈ [A] [×] th reaction is s	actor of 4) nen $[2]^{x} = 4$ aid to be sec	, x = ?

	R	ate La	w and	Order		
Trial	[A]	[B]	[C]	Rate (M/sec)		Tri
1	0.1	0.1	0.1	0.01		1
2	0.1	0.1	0.2	0.01		2
3	0.1	0.2	0.1	0.02		3
4	0.2	0.2	0.1	0.08		4
>Wha >Ra	t happe so from 1 >y=1 >So this >We say	ens to ra les (facto rate~ $[B]^{y}$ th reaction is s $(B)^{1}$	ate wher or of 2) nen [2] ^y = 2 aid to be first	n [B] doubles?		A

Rate Law and Order

Trial	[A]	[B]	[C]	Rate (M/sec)
1	0.1	0.1	0.1	0.01
2	0.1	0.1	0.2	0.01
3	0.1	0.2	0.1	0.02
4	0.2	0.2	0.1	0.08

>What happens to rate when [C] doubles?

➢Rate does not change (factor of 1)

So from rate \approx [C]^z then [2]^z = 1, z = ?

≻z=0

>So this reaction is said to be zero order with respect to C

>We say [C]⁰ (this means [C] will drop out of our rate equation

Rate Law and Order								
Trial	[A]	[B]	[C]	Rate (M/sec)				
1	0.1	0.1	0.1	0.01				
2	0.1	0.1	0.2	0.01				
3	0.1	0.2	0.1	0.02				
4	4 0.2 0.2 0.1 0.08							
Summary: Rate = $k[A]^{2}[B]^{1}[C]^{0}$, but $[C]^{0} = 1$ so it drops out Thus Rate = $k[A]^{2}[B]^{1}$								
The ov Solve f	The overall rate order is 3. Solve for k: Using data from trial 3:							
$k = \frac{\text{rate}}{[A]^2 [B]^1} \qquad \qquad k = \frac{0.02}{[0.1]^2 [0.2]} = 10 \frac{1}{M^2 \cdot \text{sec}}$								

