\qquad
Vocabulary to know: (write down definitions, symbols used, units, formulas, etc.)

- position
- distance
- displacement
- speed
- velocity
- average velocity
- acceleration
- mass

- force
- "Total Force" (same as "Net Force" or "Resultant Force", $\Sigma \mathrm{F}$)
- Force Normal
- Force Friction
- Force Tension
- Force Gravity
- Force Push/Pull
- Coefficient of Friction
- Vector
- Free fall
- Fundamental forces
- Gravity
- Electromagnetic
- Strong Nuclear
- Specific Equation

If the total force on an object is zero, then the object will not speed up, slow down, or change direction. In other words, its velocity will be constant and its acceleration will be zero. This is also known as Newton's lost Law of Motion.
If the total force on a system is doubled , but the system's mass remains constant, then the acceleration that the system experiences will double. If the system's mass doubles, but the total force on the system remains constant, then the system's acceleration will be half as much. The more general form of this relationship is known as Newton's Lad Law of Motion: $\mathbf{a}=\mathbf{F} / m$, or stated another way, $\Sigma \mathrm{F}=\mathrm{m}, \mathrm{a}$

- Is the total force, ΣF, on A positive, negative, o zero? $\begin{gathered}\text {...object } B \text { ? How do you know? } \\ \text { both }\end{gathered}$
- Compare the accelerations (,,+- 0) of objects A and B.
both are zero
- Do the objects ever have the same velocity? If so, when?
no
- Are the objects ever at the same position at the same time? If so, when?

Both are at position zero at $t=0$

- Which object is ahead of the other? Does this ever change? If so, when?
A is always ahead of B

Draw the x vs. t graph.

Draw the a vs. \mathbf{t} graph

- Is the total force, Σ F, on C positive, negative, or ...object D? How do you know?
- Compare the accelerations (,,+- 0) of objects C and D.

$$
C=0 \quad D=\text { constant and positive }
$$

$\rightarrow \underset{\text { veloce is constant }}{C}$
velocity,
D is accélsating

- Do the objects ever have the same velocity? If so, when?

Yes, at approximately 1.5 s

- What is the displacement for object C at $6 s$?

$$
\begin{align*}
& \Delta x=\text { area of } v v s t g r a p h=b \cdot h=(6)(2)=
\end{align*}
$$

- What is the displacement for object D at $6 s$?
$1 / 2(6)(8)=24 \mathrm{~m}$
- Based upon the velocity vs. time graph above, which object has the larger velocity at $t=4 \mathrm{~s}$? D
- Based upon the velocity vs. time graph, which object has the larger acceleration? D
- What is the specific equation for object D in the v vs graph above?

$$
V=\left(1.33 \mathrm{~m} / \mathrm{s}^{2}\right) t
$$

Two objects are in contact with each other. How does the force of the larger object on the smaller object compare to the force of the smaller object on the larger object? Equal
An object cant push on another object without receiving an equal push
 back, in the opposite direction. This is known as Newton's 3 rd Law of Motion: For every force, there is an equal but opposite force.

Complete the x vs t and a vs t graphs below:
X

v

a

Complete the comparison for each of the following with $>,<$, or $=$.

$\mathrm{F}_{\text {person-truck }}=\mathrm{F}_{\text {truck-person }}$

When a car hits a mosquito, which object experiences a greater force? ...a greater acceleration?
both equal mosquito

Do you pull harder on the Earth or does the Earth pull harder on you? - same for both
When hit, which experiences the greater force, the baseball or the bat? same for both

Since $\Delta v=0 \& a=\underline{O}$, therefore $\Sigma F=\underline{O}$.

If the object (in the above) has a mass of 50 kg , the normal force is 424 N , and the angle at which the person is pulling is 50°, how hard must the person be pulling and what is the coefficient of friction? Which is larger, F_{T} or F_{f} ?

$$
\begin{array}{ll}
F_{g}=50 \mathrm{~kg} \cdot 9.8 N / \mathrm{kg}=490 \mathrm{~N} \\
\frac{66 N}{\sin 50}=\frac{F_{T}}{\sin 90} \quad \frac{66 N}{\sin 50}=\frac{F_{f}}{\sin 40} & 490 \mathrm{~N}=F_{g} \\
F_{T}=86.2 \mathrm{~N} & F_{f}=55.4 \mathrm{~N} \\
F_{f}=\mu \cdot F_{N} & \mu=F_{f} / F_{N}=0.64
\end{array} \quad \begin{aligned}
& \quad 490-424=x
\end{aligned}
$$

A marble rolls off of the ledge that of a building that is 15 m above the ground. How fast would the marble need to be rolling in order to land 5 m from the base of the building?

$$
\begin{gathered}
\text { horizontal } \\
\Delta x=5 \mathrm{~m} \\
\Delta t=1.75 \mathrm{~s} \\
a=0 \\
v_{i}= \\
5 \mathrm{~m}=0+v_{-}(1.75 \mathrm{~s}) \\
v_{=}=2.86 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

$|$| vertical |
| :--- |
| $\Delta y=-15 \mathrm{~m}$ |
| $\Delta t=1.75 \mathrm{~s}$ |
| $a z-9.8 \mathrm{~m} / \mathrm{s}^{2}$ |
| $V_{5}=0 \mathrm{~m} / \mathrm{s}$ |
| $-15 \mathrm{~m}=\frac{1}{2}\left(-9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) t^{2}+0$ |
| $t^{2}=3.06 \mathrm{~s}^{2} \Rightarrow t=1.75 \mathrm{~s}$ |

You and a friend throw rocks horizontally off a cliff into a lake. Your friend throws a rock with twice the mass, but both rocks leave with the same velocity. Draw their trajectories and compare ($>,<,=$) the:

- Time to hit the water
- Final velocity
- Horizontal distance traveled
- Total force while in the air
- Mass
- Acceleration while in the air

Big Rock = Small Rock
Big Rock $=$ Small Rock
Big Rock =Small Rock
Big Rock $>$ Small Rock
Big Rock 7 Small Rock
Big Rock $=$ Small Rock

You pick up two more rocks. Again, you throw your rock horizontally off the cliff. Your friend, however, just drops his rock over the edge as you throw your rock. Draw their trajectories and compare the:

- Time to hit the water
- Vertical velocity when hit water
- Horizontal distance traveled
- Acceleration while in air

Thrown $=$ Dropped Thrown $=$ Dropped Thrown $>$ Dropped Thrown $=$ Dropped

From a stoplight, a 50 kg person accelerates at $7 \mathrm{~m} / \mathrm{s}^{2}$ in their Chevy Corvette. The total force, ΣF, on the person is:

$$
\Sigma F=m \cdot a=50 \mathrm{~kg} \cdot 7 \mathrm{~m} / \mathrm{s}^{2}=350 \mathrm{~N}
$$

A 70 kg person is riding in an elevator. The elevator accelerates upward at $1.0 \mathrm{~m} / \mathrm{s}^{2}$.
a) Draw a labeled force diagram and vector addition diagram for this situation:

$$
\begin{aligned}
& \overbrace{N} \quad \varepsilon F_{N} \quad F_{g} \| F_{N} \\
& F_{g}=70 \mathrm{~kg} \cdot 9.8 \mathrm{~N}(\mathrm{~kg}=686 \mathrm{~N} \\
& F_{N}=F_{9}+\Sigma F \\
& \Sigma F=70 \mathrm{~kg} \cdot 1.0 \mathrm{~m} / \mathrm{s}^{2}=70 \mathrm{~N} \\
& =756 \mathrm{~N}
\end{aligned}
$$

b) What is the force due to gravity on the person? \qquad $686 N$
c) What is the force normal, F_{N}, on the donkey? \qquad $756 N$ person

You are shooting to the top of power tower while increasing speed. Draw the force diagram and describe if you would feel your usual weight, heavier than normal, or lighter than normal for this situation.

feel heavier

$$
\begin{aligned}
& \text { (force normal is bigger } \\
& \text { than usual) }
\end{aligned}
$$

Examine the following diagrams and answer the questions for each.

Two marbles of equal mass, A and B, are launched off a table. Marble A has twice the horizontal velocity.
Which marble will hit the floor first? -Nerther-same time Which marble will travel farther? A
Why?
A has faster velocity -can travel farther in same amount of time

Marble A has twice the mass of Marble B. Marble A is launched from twice the height as Marble B. They are launched at the same horizontal velocity.

Which marble will hit the floor first? B Which marble will travel farther? A Why? A spends more time in the air so it will travel
farther.

