SI Units, Accuracy and Precision

SI (Systeme International) Base units

- Length $=\mathrm{m}$ (meters)
- Mass $=\mathrm{kg}$ (any version of a gram is ok)
- Time = s (seconds)
- Electric current = A (amperes)
- Temperature $=\mathrm{K}$ (Kelvin)
- Amount of a substance $=$ mole (mol)
- And just for fun -

Luminous intensity = candela (cd)

SI Units Continued

SI Prefixes

- Tera $(\mathrm{T})=\operatorname{trillion}\left(10^{12}\right)$
- Giga $(\mathrm{G})=$ billion $\left(10^{9}\right)$
- Mega $(\mathrm{M})=$ million $\left(1^{6}\right)$
- Kilo (k) = thousand (10^{3})
- Hecto (h) = hundred (10^{2})
- Deca (da) $=$ ten $\left(1^{11}\right)$
- -------BASE UNIT--------
- Deci $(\mathrm{d})=$ tenth $\left(10^{-1}\right)$
- Centi $(c)=$ hundreth $\left(10^{-2}\right)$
- Milli $(m)=$ thousandth $\left(10^{-3}\right)$
- Micro $(\mu)=$ millionth $\left(10^{-6}\right)$
- $\operatorname{Nano}(\mathrm{n})=$ billionth $\left(10^{-9}\right)$
- Pico $(\mathrm{p})=$ trillionth $\left(10^{-12}\right)$

Accuracy and Precision

- Which is better - to be accurate or precise? (ponder for a moment)

Sig Digs!!! How many?

1. All non-zero numbers are always significant.

Example: 345 has 3 significant digits
2. Captive zeros (zeros between non-zero numbers) are always significant.
Example: 2.004 has 4 significant digits
3. Trailing zeros (zeros to the right of a non-zero number) are significant only when the number contains a decimal point.
Example: 300.0 has 4 significant digits, but 300 has only 1 significant digit
4. Leading zeros (zeros to the left of the first non-zero number) are not significant.

Example: 0.00429 has 3 significant digits
5. Exact numbers are considered to have unlimited significant digits. Numbers such as those determined by counting, or from definitions are considered exact

Examples:
3 pennies - the 3 has unlimited significant digits
1 foot $=12$ inches - the 1 and 12 have unlimited
significant digits, based on the definition of a foot

Accuracy and Precision

- Precision is the reproducibility of the measurements. Precise measurements all end up very close in value.
- Accuracy is the closeness of a measurement to the true value.
- Which is better? To be accurate or precise?

Calculating with Sig Digs

Multiplication and Division: Your answer can only have as many significant digits as the factor with the least number of significant digits. Example: $29.1 \mathrm{~cm} \times 1.04 \mathrm{~cm} \times 22 \mathrm{~cm}=665.808 \mathrm{~cm}^{3}$ (on calculator), but must be rounded to 2 significant digits which equals $670 \mathrm{~cm}^{3}$.

Addition and Subtraction: Your answer must be rounded to the decimal place of the number that had the least number of decimal places Example: $145.92 \mathrm{~g}+22.0 \mathrm{~g}+57.712 \mathrm{~g}=225.632 \mathrm{~g}$ (on calculator), but must be rounded to the tenths place because 22.0 is only to the tenths place. Thus, the answer is changed to 225.6 g .

Remember-multiplication and division go by total number of digits; addition and subtraction go by least decimal place.

