1. Write and balance the equation

2. Use molarity (M) and volume (L) of the acid or base to find the moles of that acid or base. $\mathrm{Mx} \mathrm{V}(\mathrm{L})=$ moles
3. Use the coefficients from the balanced equation to find moles of the unknown acid or base.

$$
\text { moles unknown }=(\text { moles known })\left(\frac{\text { unknown coefficient }}{\text { known coefficient }}\right)
$$

4. Use the moles you have just determined to find either a molarity or mass \%

Mass \% (purity)	Molarity
Moles known (from step 3)	$\frac{\text { Moles known (from step 3) }}{\text { x }}=$ Molarity
Molar mass of unkown (L) of unknown	
$=$ Mass of unknown	
\downarrow	
$\left(\frac{\text { mass of unknown }}{\text { mass of impure sample }}\right) \times 100=\%$ purity	

- Volumes must be in liters (L). Divide mL by 1000 to convert to L.

